Load, Save, and .rda files

[This article was first published on The Practical R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

A couple weeks ago I stumbled across a feature in R that I had never heard of before. The functions save(), load(), and the R file type .rda.

The .rda files allow a user to save their R data structures such as vectors, matrices, and data frames. The file is automatically compressed, with user options for additional compression. Let’s take a look.

First, we will grab one of the built-in R datasets. We can view these by calling data(). Let’s use the “Orange” dataset.

# get the Orange data
Orange
   Tree  age circumference
1     1  118            30
2     1  484            58
3     1  664            87
4     1 1004           115
5     1 1231           120
6     1 1372           142
7     1 1582           145
8     2  118            33
9     2  484            69
10    2  664           111
11    2 1004           156
12    2 1231           172
13    2 1372           203
14    2 1582           203
15    3  118            30
16    3  484            51
17    3  664            75
18    3 1004           108
19    3 1231           115
20    3 1372           139
21    3 1582           140
22    4  118            32
23    4  484            62
24    4  664           112
25    4 1004           167
26    4 1231           179
27    4 1372           209
28    4 1582           214
29    5  118            30
30    5  484            49
31    5  664            81
32    5 1004           125
33    5 1231           142
34    5 1372           174
35    5 1582           177

Next, let’s save each column individually as vectors.

# save the Orange data as vectors
count<-Orange$Tree
age<-Orange$age
circumference<-Orange$circumference

Now if we look at our variables in the RStudio environment, we can see count, age, and circumference saved there.
saved_files

Next, let’s set our R working directory, so the .rda file will save in the correct location. First we’ll use getwd() to find our current working directory, then we’ll adjust it (if needed) using setwd(). I set my working directory to a folder on the D drive.

#get and set working directory
getwd()
[1] "D:/Users"
setwd("D:/r-temp")
> getwd()
[1] "D:/r-temp"

Finally, let’s use the save() command to save our 3 vectors to an .rda file. The “file” name will be the name of the new .rda file.

#save to rda file
save(count, age, circumference, file = "mydata.rda")

Next we will remove our R environment variables using the command rm().

#remove variables
rm(age, circumference, count)

Now we can see that we no longer have saved variables in our R workspace.
no-saved-files

Now, we can check that our .rda file (myrda.rda) does in fact store our data by using the load() command.
Note: If we had not properly set our working directory, then we would have needed to provide a full path to the rda file. For example, “C:/Users/Documents/R files/myrda” rather than just “myrda”.

#load the rda file
load(file = "mydata.rda")

Great, now we can see that our variables are back in the R environment for use once more.

saved_files

Saving and loading data in R might be very useful when you’re working with large datasets that you want to clear from your memory, but you also would like to save for later. It also might be useful for long, complex R workflows and scripts. You can control the compression of the file using the settings ‘compress’ and ‘compression_level’.

That’s all for now!


To leave a comment for the author, please follow the link and comment on their blog: The Practical R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)