library(lme4) #> Loading required package: Matrix library(sjPlot) library(ggplot2) theme_set(theme_sjplot()) # Create data using code by Ben Bolker from # https://stackoverflow.com/a/38296264/7050882 set.seed(101) spin = runif(600, 1, 24) reg = runif(600, 1, 15) ID = rep(c("1","2","3","4","5", "6", "7", "8", "9", "10")) day = rep(1:30, each = 10) testdata <- data.frame(spin, reg, ID, day) testdata$fatigue <- testdata$spin * testdata$reg/10 * rnorm(30, mean=3, sd=2) fit = lmer(fatigue ~ spin * reg + (1|ID), data = testdata, REML = TRUE) plot_model(fit, type = 'pred', terms = c('spin', 'reg')) #> Warning: Ignoring unknown parameters: linewidth...
library(lme4) #> Loading required package: Matrix library(sjPlot) #> Learn more about sjPlot with 'browseVignettes("sjPlot")'. library(ggplot2) theme_set(theme_sjplot()) # Create data partially based on code by Ben Bolker # from https://stackoverflow.com/a/38296264/7050882 set.seed(101) spin = runif(800, 1, 24) trait = rep(1:40, each = 20) ID = rep(1:80, each = 10) testdata <- data.frame(spin, trait, ID) testdata$fatigue <- testdata$spin * testdata$trait / rnorm(800, mean = 6, sd = 2) # Model fit = lmer(fatigue ~ spin * trait + (1|ID), data = testdata, REML = TRUE) #> boundary (singular) fit: see help('isSingular') plot_model(fit, type = 'pred', terms = c('spin', 'trait')) #> Warning: Ignoring unknown parameters: linewidth...
library(fuzzyjoin) library(dplyr) #> #> Attaching package: 'dplyr' #> The following objects are masked from 'package:stats': #> #> filter, lag #> The following objects are masked from 'package:base': #> #> intersect, setdiff, setequal, union library(knitr) small_tab = data.frame(Food.Name = c('Corn', 'Squash', 'Peppers'), Food.Code = c(NA, NA, NA)) large_tab = data.frame(Food.Name = c('Sweet Corn', 'Red Corn', 'Baby Corns', 'Squash', 'Long Squash', 'Red Pepper', 'Green Pepper', 'Red Peppers'), Food.Code = c(532, 532, 944, 111, 123, 654, 655, 654)) joined_tab = stringdist_join(small_tab, large_tab, by = 'Food.Name', ignore_case = TRUE, method = 'cosine', max_dist = 0.5, distance_col = 'dist') %>% # Tidy columns select(Food.Name = Food.Name.x, -Food.Name.y, Food.Code = Food.Code.y, -dist) %>% # Only keep most frequent food code per food name group_by(Food.Name) %>% count(Food.Name, Food.Code) %>% slice(which.max(n)) %>% select(-n) %>% # Order food names as in the small table arrange(factor(Food.Name, levels = small_tab$Food.Name)) # Show table with columns renamed joined_tab %>% rename('Food Name' = Food.Name, 'Food Code' = Food.Code) %>% kable()Food Name Food Code Corn 532 Squash 111 Peppers 654 Created on 2023-05-31 with reprex v2.0.2 [Read more...]
Copyright © 2023 | MH Corporate basic by MH Themes