[This article was first published on T. Moudiki's Webpage - R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In the popular R package forecast
, there are 2 different types of interfaces:
- A direct interface for functions like
forecast::thetaf
doing fitting and inference simultaneously
nile.fcast <- forecast::thetaf(Nile) plot(nile.fcast)
- An interface for fitting first and then forecasting, like
forecast::ets
, where you need to use, in additionforecast::forecast
:
fit <- forecast::ets(USAccDeaths) plot(forecast::forecast(fit))
In this post, I describe how to obtain probabilistic forecasts from R package forecast
– and packages that follow a similar philosophy such as forecastHybrid, ahead, etc. –, by using a unified interface (ahead::genericforecast
). Then, I present ahead::conformalize
, a function that allows to obtain forecasts using the method described in Conformalized predictive simulations for univariate time series (more details can be found in these slides).
0 – Packages
utils::install.packages(c("remotes", "e1071", "forecast", "glmnet")) remotes::install_github("Techtonique/ahead") library(ahead) library(forecast) y <- fdeaths #AirPassengers #Nile #mdeaths #fdeaths #USAccDeaths h <- 25L
1 – Generic forecaster (unified interface)
1 – 1 – Using default parameters
par(mfrow=c(2, 2)) plot(ahead::genericforecast(FUN=forecast::thetaf, y, h)) plot(ahead::genericforecast(FUN=forecast::meanf, y, h)) plot(ahead::genericforecast(FUN=forecast::rwf, y, h)) plot(ahead::genericforecast(FUN=forecast::ets, y, h)) par(mfrow=c(2, 2)) plot(ahead::genericforecast(FUN=forecast::tbats, y, h)) plot(ahead::genericforecast(FUN=HoltWinters, y, h)) plot(ahead::genericforecast(FUN=forecast::Arima, y, h)) plot(ahead::genericforecast(FUN=ahead::dynrmf, y, h))
1 – 2 – Using additional parameters
par(mfrow=c(2, 2)) plot(ahead::genericforecast(FUN=ahead::dynrmf, y=y, h=h, fit_func=e1071::svm, predict_func=predict)) plot(ahead::genericforecast(FUN=ahead::dynrmf, y=y, h=h, fit_func=glmnet::cv.glmnet, predict_func=predict)) plot(ahead::genericforecast(FUN=forecast::tbats, y=y, h=h, use.box.cox = TRUE, use.trend=FALSE)) plot(ahead::genericforecast(FUN=forecast::rwf, y=y, h=h, lambda=1.1))
2 – Conformal prediction
2 – 1 – Using default parameters
y <- USAccDeaths par(mfrow=c(3, 2)) obj <- ahead::conformalize(FUN=forecast::thetaf, y, h); plot(obj) obj <- ahead::conformalize(FUN=forecast::meanf, y, h); plot(obj) obj <- ahead::conformalize(FUN=forecast::rwf, y, h); plot(obj) obj <- ahead::conformalize(FUN=forecast::ets, y, h); plot(obj) par(mfrow=c(2, 2)) obj <- ahead::conformalize(FUN=forecast::auto.arima, y, h); plot(obj) obj <- ahead::conformalize(FUN=forecast::tbats, y, h); plot(obj) obj <- ahead::conformalize(FUN=HoltWinters, y, h); plot(obj) obj <- ahead::conformalize(FUN=forecast::Arima, y, h); plot(obj)
2 – 2 – Using additional parameters
y <- AirPassengers par(mfrow=c(2, 2)) obj <- ahead::conformalize(FUN=forecast::thetaf, y, h); plot(obj) obj <- ahead::conformalize(FUN=forecast::rwf, y=y, h=h, drift=TRUE); plot(obj) obj <- ahead::conformalize(FUN=HoltWinters, y=y, h=h, seasonal = "mult"); plot(obj) obj <- ahead::conformalize(FUN=ahead::dynrmf, y=y, h=h, fit_func=glmnet::cv.glmnet, predict_func=predict); plot(obj)
2 – 3 – Using other simulation methods (conformal prediction-based)
y <- fdeaths par(mfrow=c(3, 2)) obj <- ahead::conformalize(FUN=forecast::thetaf, y=y, h=h, method="block-bootstrap"); plot(obj) obj <- ahead::conformalize(FUN=forecast::rwf, y=y, h=h, drift=TRUE, method="bootstrap"); plot(obj) obj <- ahead::conformalize(FUN=forecast::ets, y, h, method="kde"); plot(obj) obj <- ahead::conformalize(FUN=forecast::tbats, y=y, h=h, method="surrogate"); plot(obj) obj <- ahead::conformalize(FUN=HoltWinters, y=y, h=h, seasonal = "mult", method="block-bootstrap"); plot(obj) obj <- ahead::conformalize(FUN=ahead::dynrmf, y=y, h=h, fit_func=glmnet::cv.glmnet, predict_func=predict, method="surrogate"); plot(obj)
To leave a comment for the author, please follow the link and comment on their blog: T. Moudiki's Webpage - R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.