arrange(severity) |> summarise(.by = num_acc, outcome = glue_collapse(outcome, sep = "")) # accident locations bike_accidents filter(num_acc %in% bike_car_acc) |> st_as_sf(coords = c("long", "lat"), crs = "EPSG:4326") |> left_join(bikers_display, join_by(num_acc)) That’s 2858 accidents and 772 bikers killed. Map bike_accidents |> leaflet() |> addTiles(attribution = r"( r.iresmi.net. data: Ministère de l'intérieur 2023; map: OpenStreetMap)") |> addCircleMarkers(popup = ~ glue("{an}-{mois}-{jour} biker status: {outcome}"), clusterOptions = markerClusterOptions()) Figure 1: Bike accidents in France – 2023 " />

Bike accidents

[This article was first published on r.iresmi.net, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

A photo of a crashed bike

Ciclista atropellado – CC-BY by Nicanor Arenas Bermejo

Day 20 & 21 of 30DayMapChallenge: « OpenStreetMap » and « Conflict » (previously).

Mapping the accidents between bicycles and cars in 2023 in France. We have had a few sad accidents recently showing a growing attention on cyclist security and the conflicts on the road.

We’ll use the Annual databases of road traffic injuries on an OSM background.

Config

library(dplyr)
library(tidyr)
library(readr)
library(janitor)
library(sf)
library(glue)
library(leaflet)

Data

The data guide is available (in french).

# vehicules-2023.csv
vehicles <- read_csv2(
  "https://www.data.gouv.fr/fr/datasets/r/146a42f5-19f0-4b3e-a887-5cd8fbef057b", 
  name_repair = make_clean_names) 

# caract-2023.csv
caract <- read_csv2(
  "https://www.data.gouv.fr/fr/datasets/r/104dbb32-704f-4e99-a71e-43563cb604f2", 
  name_repair = make_clean_names)

# usagers-2023.csv
user <- read_csv2(
  "https://www.data.gouv.fr/fr/datasets/r/68848e2a-28dd-4efc-9d5f-d512f7dbe66f", 
  name_repair = make_clean_names)

severity <- tribble(
    ~grav, ~severity,
        1, "Unharmed",
        2, "Killed",
        3, "Injured hospitalized",
        4, "Slightly injured") |> 
  mutate(severity = factor(
    severity, 
    labels = c("Killed",
               "Injured hospitalized",
               "Slightly injured",
               "Unharmed")))

Find out

# accidents where car and bikes are involved
bike_car_acc <- vehicles |> 
  filter(catv %in% c(1, 7)) |> # 1 bike ; 7 : car
  count(num_acc, catv) |> 
  pivot_wider(names_from = catv, values_from = n, names_prefix = "catv_") |> 
  filter(catv_7 > 0 & catv_1 > 0) |> 
  pull(num_acc)

# bikers injuries
bikers <- vehicles |> 
  filter(num_acc %in% bike_car_acc,
         catv == 1) |>
  left_join(user, join_by(num_acc, id_vehicule)) |> 
  left_join(severity, join_by(grav)) |> 
  count(num_acc, severity) 

bikers_display <- bikers |> 
  mutate(outcome = glue("{severity} ({n})")) |> 
  arrange(severity) |> 
  summarise(.by = num_acc,
            outcome = glue_collapse(outcome, sep = "<br />"))

# accident locations
bike_accidents <- caract |> 
  filter(num_acc %in% bike_car_acc) |> 
  st_as_sf(coords = c("long", "lat"), crs = "EPSG:4326") |> 
  left_join(bikers_display, join_by(num_acc))

That’s 2858 accidents and 772 bikers killed.

Map

bike_accidents |> 
  leaflet() |> 
  addTiles(attribution = r"(
           <a href="https://r.iresmi.net/">r.iresmi.net</a>.
           data: Ministère de l'intérieur 2023;
           map: <a href="https://www.openstreetmap.org/copyright/">OpenStreetMap</a>)") |> 
  addCircleMarkers(popup = ~ glue("<b>{an}-{mois}-{jour}</b><br /><br />
                                  biker status:<br />
                                  {outcome}"),
                   clusterOptions = markerClusterOptions())
To leave a comment for the author, please follow the link and comment on their blog: r.iresmi.net.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)