Gradient-Boosting anything (alert: high performance)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
We’ve always been told that decision trees are best for Gradient Boosting Machine Learning. I’ve always wanted to see for myself. AdaBoostClassifier is working well, but is relatively slow (by my own standards). A few days ago, I noticed that my Cython implementation of LSBoost in Python package mlsauce was already quite generic (never noticed before), and I decided to adapt it to any machine learning model with fit
and predict
methods. It’s worth mentioning that only regression algorithms are accepted as base learners, and classification is regression-based. The results are promising indeed; I’ll let you see for yourself below. All the algorithms, including xgboost
and RandomForest
, are used with their default hyperparameters. Which means, there’s still a room for improvement.
Install mlsauce (version 0.20.3) from GitHub:
!pip install git+https://github.com/Techtonique/mlsauce.git --verbose --upgrade --no-cache-dir import os import pandas as pd import mlsauce as ms from sklearn.datasets import load_breast_cancer, load_iris, load_wine, load_digits from sklearn.model_selection import train_test_split from time import time load_models = [load_breast_cancer, load_wine, load_iris] for model in load_models: data = model() X = data.data y= data.target X = pd.DataFrame(X, columns=data.feature_names) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 13) clf = ms.LazyBoostingClassifier(verbose=0, ignore_warnings=True, custom_metric=None, preprocess=False) start = time() models, predictions = clf.fit(X_train, X_test, y_train, y_test) print(f"\nElapsed: {time() - start} seconds\n") display(models) 2it [00:01, 1.52it/s] 100%|██████████| 30/30 [00:21<00:00, 1.38it/s] Elapsed: 23.019137859344482 seconds
Accuracy | Balanced Accuracy | ROC AUC | F1 Score | Time Taken | |
---|---|---|---|---|---|
Model | |||||
GenericBooster(LinearRegression) | 0.99 | 0.99 | 0.99 | 0.99 | 0.35 |
GenericBooster(Ridge) | 0.99 | 0.99 | 0.99 | 0.99 | 0.27 |
GenericBooster(RidgeCV) | 0.99 | 0.99 | 0.99 | 0.99 | 1.07 |
GenericBooster(TransformedTargetRegressor) | 0.99 | 0.99 | 0.99 | 0.99 | 0.40 |
GenericBooster(KernelRidge) | 0.97 | 0.96 | 0.96 | 0.97 | 2.05 |
XGBClassifier | 0.96 | 0.96 | 0.96 | 0.96 | 0.91 |
GenericBooster(ExtraTreeRegressor) | 0.94 | 0.94 | 0.94 | 0.94 | 0.25 |
RandomForestClassifier | 0.92 | 0.93 | 0.93 | 0.92 | 0.40 |
GenericBooster(RANSACRegressor) | 0.90 | 0.86 | 0.86 | 0.90 | 15.22 |
GenericBooster(DecisionTreeRegressor) | 0.87 | 0.88 | 0.88 | 0.87 | 0.98 |
GenericBooster(KNeighborsRegressor) | 0.87 | 0.89 | 0.89 | 0.87 | 0.49 |
GenericBooster(ElasticNet) | 0.85 | 0.76 | 0.76 | 0.84 | 0.10 |
GenericBooster(Lasso) | 0.82 | 0.71 | 0.71 | 0.79 | 0.09 |
GenericBooster(LassoLars) | 0.82 | 0.71 | 0.71 | 0.79 | 0.10 |
GenericBooster(DummyRegressor) | 0.68 | 0.50 | 0.50 | 0.56 | 0.01 |
2it [00:00, 8.29it/s] 100%|██████████| 30/30 [00:15<00:00, 1.92it/s] Elapsed: 15.911818265914917 seconds
Accuracy | Balanced Accuracy | ROC AUC | F1 Score | Time Taken | |
---|---|---|---|---|---|
Model | |||||
RandomForestClassifier | 1.00 | 1.00 | None | 1.00 | 0.18 |
GenericBooster(ExtraTreeRegressor) | 1.00 | 1.00 | None | 1.00 | 0.16 |
GenericBooster(KernelRidge) | 1.00 | 1.00 | None | 1.00 | 0.38 |
GenericBooster(LinearRegression) | 1.00 | 1.00 | None | 1.00 | 0.23 |
GenericBooster(Ridge) | 1.00 | 1.00 | None | 1.00 | 0.17 |
GenericBooster(RidgeCV) | 1.00 | 1.00 | None | 1.00 | 0.24 |
GenericBooster(TransformedTargetRegressor) | 1.00 | 1.00 | None | 1.00 | 0.26 |
XGBClassifier | 0.97 | 0.96 | None | 0.97 | 0.06 |
GenericBooster(Lars) | 0.94 | 0.94 | None | 0.95 | 0.99 |
GenericBooster(DecisionTreeRegressor) | 0.92 | 0.92 | None | 0.92 | 0.23 |
GenericBooster(KNeighborsRegressor) | 0.92 | 0.93 | None | 0.92 | 0.21 |
GenericBooster(RANSACRegressor) | 0.81 | 0.81 | None | 0.80 | 12.63 |
GenericBooster(ElasticNet) | 0.61 | 0.53 | None | 0.53 | 0.04 |
GenericBooster(DummyRegressor) | 0.42 | 0.33 | None | 0.25 | 0.01 |
GenericBooster(Lasso) | 0.42 | 0.33 | None | 0.25 | 0.02 |
GenericBooster(LassoLars) | 0.42 | 0.33 | None | 0.25 | 0.01 |
2it [00:00, 5.14it/s] 100%|██████████| 30/30 [00:15<00:00, 1.92it/s] Elapsed: 16.0275661945343 seconds
Accuracy | Balanced Accuracy | ROC AUC | F1 Score | Time Taken | |
---|---|---|---|---|---|
Model | |||||
GenericBooster(Ridge) | 1.00 | 1.00 | None | 1.00 | 0.23 |
GenericBooster(RidgeCV) | 1.00 | 1.00 | None | 1.00 | 0.25 |
RandomForestClassifier | 0.97 | 0.97 | None | 0.97 | 0.26 |
XGBClassifier | 0.97 | 0.97 | None | 0.97 | 0.12 |
GenericBooster(DecisionTreeRegressor) | 0.97 | 0.97 | None | 0.97 | 0.27 |
GenericBooster(ExtraTreeRegressor) | 0.97 | 0.97 | None | 0.97 | 0.22 |
GenericBooster(LinearRegression) | 0.97 | 0.97 | None | 0.97 | 0.15 |
GenericBooster(TransformedTargetRegressor) | 0.97 | 0.97 | None | 0.97 | 0.37 |
GenericBooster(KNeighborsRegressor) | 0.93 | 0.95 | None | 0.93 | 1.52 |
GenericBooster(KernelRidge) | 0.87 | 0.83 | None | 0.85 | 0.63 |
GenericBooster(RANSACRegressor) | 0.63 | 0.59 | None | 0.61 | 10.86 |
GenericBooster(Lars) | 0.50 | 0.46 | None | 0.48 | 0.99 |
GenericBooster(DummyRegressor) | 0.27 | 0.33 | None | 0.11 | 0.01 |
GenericBooster(ElasticNet) | 0.27 | 0.33 | None | 0.11 | 0.01 |
GenericBooster(Lasso) | 0.27 | 0.33 | None | 0.11 | 0.01 |
GenericBooster(LassoLars) | 0.27 | 0.33 | None | 0.11 | 0.01 |
!pip install shap import shap best_model = clf.get_best_model() # load JS visualization code to notebook shap.initjs() # explain all the predictions in the test set explainer = shap.KernelExplainer(best_model.predict_proba, X_train) shap_values = explainer.shap_values(X_test) # this is multiclass so we only visualize the contributions to first class (hence index 0) shap.force_plot(explainer.expected_value[0], shap_values[..., 0], X_test)
WARNING:shap:Using 120 background data samples could cause slower run times. Consider using shap.sample(data, K) or shap.kmeans(data, K) to summarize the background as K samples. 0%| | 0/30 [00:00<?, ?it/s]
Have you run `initjs()` in this notebook? If this notebook was from another user you must also trust this notebook (File -> Trust notebook). If you are viewing this notebook on github the Javascript has been stripped for security. If you are using JupyterLab this error is because a JupyterLab extension has not yet been written.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.