Site icon R-bloggers

{datardis} package v.0.0.5

[This article was first published on Jonathan Kitt, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
< section id="introduction" class="level1">

Introduction


The {datardis} package includes datasets which provide lists of episodes for the Doctor Who and Torchwood TV series.

The latest version of the package (v.0.0.5) includes the latest episodes :


< section id="installing-the-package" class="level1">

Installing the package


To install the latest version of the package, use the following command:

# 🔽 INSTALL THE PACKAGE --------------------------------------------------

install.packages("datardis")


Alternatively, you can install the package from GitHub using {devtools} :

devtools::install_github("KittJonathan/datardis")


< section id="loading-the-packages" class="level1">

Loading the packages


First of all, let’s load the packages we’ll be using :

If you don’t have the {tidyverse} installed, simply use the install.packages("tidyverse") function.


# 📦 LOAD THE PACKAGES ----------------------------------------------------

library(tidyverse)
library(datardis)


< section id="cleaning-the-data" class="level1">

Cleaning the data


We use the following code to clean the data:

# 🧹  Clean the data ----

categories <- all_countries |>
  # extract unique values
  distinct(Category, Subcategory)

d <- global_human_day |>
  # join the categories
  left_join(categories) |>
  # select columns
  select(Category, hoursPerDay) |>
  # add hours per category
  summarise(total = sum(hoursPerDay), .by = Category) |>
  # arrange by decreasing amount of time
  arrange(-total) |>
  # split the total column into two values
  separate(col = total, into = c("h", "m"), remove = F) |>
  # transform the trailing hours value into minutes
  mutate(m = round(as.numeric(paste0("0.", m)) * 60),
         h = as.numeric(h)) |>
  # create labels for plots
  mutate(duration = case_when(h == 0 ~ paste0(m, "m"),
                              TRUE ~ paste0(h, "h ", m, "m"))) |>
  # select columns
  select(Category, total, duration)


< section id="creating-the-plot" class="level1">

Creating the plot


First we create a custom function to generate one plot per category :

plot_hm <- function(data, row) {
  ggplot() +
    geom_rect(aes(xmin = 3, xmax = 4,
                  ymin = 0, ymax = 24),
              colour = "#7e38b7", fill = "#7e38b7") +
    geom_rect(data = slice(data, row),
              aes(xmin = 3, xmax = 4,
                  ymin = 0, ymax = total),
              colour = "#9c89ff", fill = "#9c89ff") +
    coord_polar(theta = "y") +
    xlim(c(0.05, 4)) +
    labs(title = d$Category[row]) +
    annotate("text", x = 0.05, y = 0,
             label = d$duration[row],
             family = "Roboto Condensed",
             colour = "#c4feff",
             size = 25) +
    theme_void() +
    theme(panel.background = element_rect(fill = "#541675",
                                          colour = NA),
          plot.background = element_rect(fill = "#541675",
                                         colour = NA),
          plot.title = element_text(family = "Roboto Condensed",
                                    colour = "#c4feff", size = 40,
                                    hjust = 0.5,
                                    margin = margin(b = -10)))
}


We use the following code to create and assemble the plots and export the final figure :

# Create the plots
p1 <- plot_hm(d, 1)
p2 <- plot_hm(d, 2)
p3 <- plot_hm(d, 3)
p4 <- plot_hm(d, 4)
p5 <- plot_hm(d, 5)
p6 <- plot_hm(d, 6)
p7 <- plot_hm(d, 7)
p8 <- plot_hm(d, 8)

# Assemble the plots
p <- (p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) +
  plot_layout(ncol = 4) +
  plot_annotation(title = "How humans spend their day time",
                  caption = "#TidyTuesday 2023 week 37 | Data from the Human Chronome Project | Jonathan Kitt",
                  theme = theme(panel.background = element_rect(fill = "#541675", colour = NA),
                                plot.background = element_rect(fill = "#541675", colour = NA),
                                plot.title = element_text(family = "Roboto Condensed",
                                                            colour = "#c4feff", size = 100,
                                                            hjust = 0.5, margin = margin(t = 5, b = 25)),
                                plot.caption = element_text(family = "Roboto Condensed",
                                                            colour = "white", size = 30, hjust = 0.5)))

# Export the plot
ggsave("figs/tt_2023_w37_global_human_day.png", p, dpi = 320, width = 12, height = 6)


We now create the second plot:


And here’s the result!

To leave a comment for the author, please follow the link and comment on their blog: Jonathan Kitt.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Exit mobile version