R-bloggers

SHAP Values of Additive Models

[This article was first published on R – Michael's and Christian's Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Within only a few years, SHAP (Shapley additive explanations) has emerged as the number 1 way to investigate black-box models. The basic idea is to decompose model predictions into additive contributions of the features in a fair way. Studying decompositions of many predictions allows to derive global properties of the model.

What happens if we apply SHAP algorithms to additive models? Why would this ever make sense?

In the spirit of our “Lost In Translation” series, we provide both high-quality Python and R code.

The models

Let’s build the models using a dataset with three highly correlated covariates and a (deterministic) response.

library(lightgbm)
library(kernelshap)
library(shapviz)

#===================================================================
# Make small data
#===================================================================

make_data <- function(n = 100) {
  x1 <- seq(0.01, 1, length = n)
  data.frame(
    x1 = x1,
    x2 = log(x1),
    x3 = x1 > 0.7
  ) |>
    transform(y = 1 + 0.2 * x1 + 0.5 * x2 + x3 + 10 * sin(2 * pi * x1))
}
df <- make_data()
head(df)
cor(df) |>
  round(2)

#       x1    x2    x3     y
# x1  1.00  0.90  0.80 -0.72
# x2  0.90  1.00  0.58 -0.53
# x3  0.80  0.58  1.00 -0.59
# y  -0.72 -0.53 -0.59  1.00

#===================================================================
# Additive linear model and additive boosted trees
#===================================================================

# Linear regression
fit_lm <- lm(y ~ poly(x1, 3) + poly(x2, 3) + x3, data = df)
summary(fit_lm)

# Boosted trees
xvars <- setdiff(colnames(df), "y")
X <- data.matrix(df[xvars])

params <- list(
  learning_rate = 0.05,
  objective = "mse",
  max_depth = 1,
  colsample_bynode = 0.7
)

fit_lgb <- lgb.train(
  params = params,
  data = lgb.Dataset(X, label = df$y),
  nrounds = 300
)
import numpy as np
import lightgbm as lgb
import shap
from sklearn.preprocessing import PolynomialFeatures
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression

#===================================================================
# Make small data
#===================================================================

def make_data(n=100):
    x1 = np.linspace(0.01, 1, n)
    x2 = np.log(x1)
    x3 = x1 > 0.7
    X = np.column_stack((x1, x2, x3))

    y = 1 + 0.2 * x1 + 0.5 * x2 + x3 + np.sin(2 * np.pi * x1)
    
    return X, y

X, y = make_data()

#===================================================================
# Additive linear model and additive boosted trees
#===================================================================

# Linear model with polynomial terms
poly = PolynomialFeatures(degree=3, include_bias=False)

preprocessor =  ColumnTransformer(
    transformers=[
        ("poly0", poly, [0]),
        ("poly1", poly, [1]),
        ("other", "passthrough", [2]),
    ]
)

model_lm = Pipeline(
    steps=[
        ("preprocessor", preprocessor),
        ("lm", LinearRegression()),
    ]
)
_ = model_lm.fit(X, y)

# Boosted trees with single-split trees
params = dict(
    learning_rate=0.05,
    objective="mse",
    max_depth=1,
    colsample_bynode=0.7,
)

model_lgb = lgb.train(
    params=params,
    train_set=lgb.Dataset(X, label=y),
    num_boost_round=300,
)

SHAP

For both models, we use exact permutation SHAP and exact Kernel SHAP. Furthermore, the linear model is analyzed with “additive SHAP”, and the tree-based model with TreeSHAP.

Do the algorithms provide the same?

system.time({  # 1s
  shap_lm <- list(
    add = shapviz(additive_shap(fit_lm, df)),
    kern = kernelshap(fit_lm, X = df[xvars], bg_X = df),
    perm = permshap(fit_lm, X = df[xvars], bg_X = df)
  )

  shap_lgb <- list(
    tree = shapviz(fit_lgb, X),
    kern = kernelshap(fit_lgb, X = X, bg_X = X),
    perm = permshap(fit_lgb, X = X, bg_X = X)
  )
})

# Consistent SHAP values for linear regression
all.equal(shap_lm$add$S, shap_lm$perm$S)
all.equal(shap_lm$kern$S, shap_lm$perm$S)

# Consistent SHAP values for boosted trees
all.equal(shap_lgb$lgb_tree$S, shap_lgb$lgb_perm$S)
all.equal(shap_lgb$lgb_kern$S, shap_lgb$lgb_perm$S)

# Linear coefficient of x3 equals slope of SHAP values
tail(coef(fit_lm), 1)                # 0.682815
diff(range(shap_lm$kern$S[, "x3"]))  # 0.682815

sv_dependence(shap_lm$add, xvars)sv_dependence(shap_lm$add, xvars, color_var = NULL)
shap_lm = {
    "add": shap.Explainer(model_lm.predict, masker=X, algorithm="additive")(X),
    "perm": shap.Explainer(model_lm.predict, masker=X, algorithm="exact")(X),
    "kern": shap.KernelExplainer(model_lm.predict, data=X).shap_values(X),
}

shap_lgb = {
    "tree": shap.Explainer(model_lgb)(X),
    "perm": shap.Explainer(model_lgb.predict, masker=X, algorithm="exact")(X),
    "kern": shap.KernelExplainer(model_lgb.predict, data=X).shap_values(X),
}

# Consistency for additive linear regression
eps = 1e-12
assert np.abs(shap_lm["add"].values - shap_lm["perm"].values).max() < eps
assert np.abs(shap_lm["perm"].values - shap_lm["kern"]).max() < eps

# Consistency for additive boosted trees
assert np.abs(shap_lgb["tree"].values - shap_lgb["perm"].values).max() < eps
assert np.abs(shap_lgb["perm"].values - shap_lgb["kern"]).max() < eps

# Linear effect of last feature in the fitted model
model_lm.named_steps["lm"].coef_[-1]  # 1.112096

# Linear effect of last feature derived from SHAP values (ignore the sign)
shap_lm["perm"][:, 2].values.ptp()    # 1.112096

shap.plots.scatter(shap_lm["add"])
SHAP dependence plot of the additive linear model and the additive explainer (Python).

Yes – the three algorithms within model provide the same SHAP values. Furthermore, the SHAP values reconstruct the additive components of the features.

Didactically, this is very helpful when introducing SHAP as a method: Pick a white-box and a black-box model and compare their SHAP dependence plots. For the white-box model, you simply see the additive components, while the dependence plots of the black-box model show scatter due to interactions.

Remark: The exact equivalence between algorithms is lost, when

Final words

R script , Python notebook

To leave a comment for the author, please follow the link and comment on their blog: R – Michael's and Christian's Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Exit mobile version