optim Function in R
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The post optim Function in R appeared first on Data Science Tutorials
Unravel the Future: Dive Deep into the World of Data Science Today! Data Science Tutorials.
optim Function in R, we will explore how to apply a general-purpose optimization using the optim
function in R programming language.
We will create example data and then demonstrate the usage of the optim
function to minimize the residual sum of squares.
optim Function in R
First, let’s create the example data we will use for this tutorial:
# Set a random seed for reproducibility set.seed(123) # Create random data x <- rnorm(500) y <- rnorm(500) + 0.7 * x # Combine x and y into a data frame data <- data.frame(x, y) # Print the head of the data head(data)
This code generates a data frame with two numeric variables, x
and y
.
x y 1 -0.56047565 -0.9942258 2 -0.23017749 -1.1548228 3 1.55870831 2.1178809 4 0.07050839 0.8004172 5 0.12928774 -1.4186651 6 1.71506499 1.1053980
Example: Applying optim Function in R
Now, let’s apply the optim
function to minimize the residual sum of squares. We will manually create a function for this purpose:
# Manually create a function for residual sum of squares optm_function <- function(data, par) { with(data, sum((par[1] + par[2] * x - y)^2)) }
Next, we can use the optim
function as shown below.
The par
argument specifies the initial values for the parameters to be optimized over, the fn
argument specifies our function, and the data
argument specifies our data frame.
We store the output of the optim
function in the optim_output
object:
# Applying optim optim_output <- optim(par = c(0, 1), fn = optm_function, data = data)
Finally, we can visualize our results in a plot. We will compare the results of the optim
function with those of a conventional linear model provided by the lm
function:
# Set plot parameters par(mfrow = c(1, 2)) # Plot results of the optim function plot(data$x, data$y, main = "optim Function") abline(optim_output$par[1], optim_output$par[2], col = "red") # Plot results of the lm function plot(data$x, data$y, main = "lm Function") abline(lm(y ~ x, data), col = "green")
The resulting plot (Figure 1) should show that both the optim
and lm
functions returned the same result, indicating that our manual optimization using the optim
.
- Apply Central Limit Theorem in R » Data Science Tutorials
- Gamma distribution in R » Data Science Tutorials
- Surprising Things You Can Do With R »
- Bias Variance Tradeoff Machine Learning Tutorial »
- How to Find Unmatched Records in R » Data Science Tutorials
The post optim Function in R appeared first on Data Science Tutorials
Unlock Your Inner Data Genius: Explore, Learn, and Transform with Our Data Science Haven! Data Science Tutorials.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.