Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The banking sector has risen since the passing of the orthodox economic policies in Turkey. This article will analyze and model an exchange-traded fund tracking the Turkish banking index for projection for the upcoming year.
library(tidyverse) library(timetk) #TCMB(Central Bank of the Republic of Turkey) One-Week Repo Rate df_tcmb_rates <- read_csv("https://raw.githubusercontent.com/mesdi/blog/main/tcmb_funds.csv") %>% janitor::clean_names() %>% select(date = release_date, tcmb_rates = actual) %>% mutate(date = case_when(str_detect(date," \\(.*\\)") ~ str_remove(date," \\(.*\\)"), #removing parentheses and the text within TRUE ~ date) %>% parse_date(date, format = "%b %d, %Y") %>% floor_date("month") %m+% months(1), tcmb_rates = str_remove(tcmb_rates, "%") %>% as.numeric()) %>% #makes regular time series by filling the time gaps pad_by_time(date, .by = "month") %>% tidyr::fill(tcmb_rates, .direction = "up") %>% drop_na() #TAU-BIST Bank Index Equity (TRY) Fund (Equity Intensive Fund) df_tau <- read_csv("https://raw.githubusercontent.com/mesdi/blog/main/tau.csv") %>% janitor::clean_names() %>% mutate(date = parse_date(date, "%m/%d/%Y")) %>% select(date, fund_price = price) #Merging all the data frames df_merged <- df_tau %>% left_join(df_tcmb_rates) %>% drop_na() #Anomaly analysis of the Fund Price df_merged %>% pivot_longer(cols = c(-date), names_to = "vars") %>% filter(vars == "fund_price") %>% anomalize(date, value) %>% plot_anomalies(date)
The anomaly plot of the fund prices confirms that shifting the policies has recently moved the fund values to a sharp upward trend.
We plan to use multiple algorithms to determine the best forecasting method. For this purpose, we will use the tidyAML package to compare all models. However, we will need to add the prophet model externally since it is not included in the package.
#Fast Regression witm many models library(tidymodels) library(modeltime) library(tidyAML) library(baguette) library(bonsai) #Split into a train and test set splits <- df_merged %>% timetk::time_series_split(assess = "1 year", cumulative = TRUE) train <- training(splits) test <- testing(splits) #Formula/preprocessing df_rec <- recipe(fund_price ~ ., data = train) #Modeling df_reg <- fast_regression( .data = df_merged, .rec_obj = df_rec, .parsnip_fns = c("rand_forest", "bag_tree", "mars", "bag_mars", "boost_tree" ), .parsnip_eng = c("ranger", "earth", "rpart", "lightgbm") ) #Adding the prophet Model #Preprocessing/formula rec_prophet <- recipe(fund_price ~ ., data = train) #Model specification spec_prophet <- prophet_reg() %>% set_engine(engine = "prophet") #Fitting workflow set.seed(12345) wflow_fit_prophet <- workflow() %>% add_recipe(rec_prophet) %>% add_model(spec_prophet) %>% fit(train) #Augmented data prophet_aug <- broom::augment(wflow_fit_prophet, new_data = test) %>% #Adding engine+function column mutate(pfe = "prophet - prophet_reg") #Plotting residuals distribution of all models library(ragg) df_reg %>% mutate(res = map(fitted_wflw, \(x) broom::augment(x, new_data = test))) %>% unnest(cols = res) %>% mutate(pfe = paste0(.parsnip_engine, " - ", .parsnip_fns)) %>% select(date, fund_price, tcmb_rates, .pred, pfe) %>% rbind(prophet_aug) %>% mutate(.res = fund_price - .pred) %>% ggplot(aes(x = .res, y = pfe, fill = pfe)) + geom_boxplot(show.legend = F) + theme_minimal(base_family = "Bricolage Grotesque", base_size = 16) + labs(title = "Residuals by Fitted Model", x = "", y = "") + theme(plot.title = element_text(hjust = 0.5))
Looking at the above chart, it seems reasonable to eliminate the prophet and lightgbm models from our workflow. We can then recalculate the accuracy of the remaining models and rank them accordingly.
#Modeling with rpart-bag_tree #Model Specificaiton mod_rpart <- bag_tree() %>% set_engine("rpart") %>% set_mode("regression") #Fitting set.seed(12345) wflw_fit_rpart <- workflow() %>% add_recipe(df_rec) %>% add_model(mod_rpart) %>% fit(train) #Modeling with ranger-rand_forest #Model Specificaiton mod_ranger <- rand_forest() %>% set_engine("ranger") %>% set_mode("regression") #Fitting set.seed(12345) wflw_fit_ranger <- workflow() %>% add_recipe(df_rec) %>% add_model(mod_ranger) %>% fit(train) #Modeling with earth - mars #Model specification mod_mars <- mars() %>% set_engine("earth") %>% set_mode("regression") #Fitting set.seed(12345) wflow_fit_mars <- workflow() %>% add_recipe(df_rec) %>% add_model(mod_mars) %>% fit(train) #Modeling with earth-bagged_mars #Model specification mod_bagged_mars <- bag_mars() %>% set_engine("earth") %>% set_mode("regression") #Fitting set.seed(12345) wflow_fit_bagged_mars <- workflow() %>% add_recipe(df_rec) %>% add_model(mod_bagged_mars) %>% fit(train) #Adding the fitted models to the model table models_df <- modeltime_table(wflw_fit_rpart, wflw_fit_ranger, wflow_fit_mars, wflow_fit_bagged_mars) %>% mutate(.function = c("bag_tree", "rand_forest", "mars", "bag_mars")) #Calibrating the models cal_df <- modeltime_calibrate(models_df, new_data = test) #Accuracy cal_df %>% modeltime_accuracy(metric_set = metric_set(rmse,rsq)) %>% arrange(-rsq) # A tibble: 4 × 6 .model_id .model_desc .function .type rmse rsq <int> <chr> <chr> <chr> <dbl> <dbl> 1 3 EARTH mars Test 0.0445 0.885 2 1 RPART bag_tree Test 0.106 0.885 3 4 EARTH bag_mars Test 0.0510 0.848 4 2 RANGER rand_forest Test 0.125 0.675
If we take rsq and rmse values into consideration, we’d better pick the mars model for forecasting. We will manually take next year’s tcmb_rates
values that reflect predictions based on most economists in Turkey. We will create an additional variable (Price_Index
) to see the percentage change from the last price.
#Forecasting ##Future(unseen) data frame library(tsibble) library(fable) date <- df_merged %>% mutate(date = yearmonth(date)) %>% as_tsibble() %>% new_data(12) %>% as_tibble() %>% mutate(date = as.Date(date)) df_future <- date %>% mutate(tcmb_rates = c(rep(42.5,3),rep(45,9))) #Re-fitting and forecasting #Calibration data for mars cal_mars <- modeltime_calibrate(wflow_fit_mars, new_data = df_merged) #Forecasted data frame tau_fc <- cal_mars %>% modeltime_refit(df_merged) %>% modeltime_forecast(new_data = df_future) %>% select(Date = .index, Fund_Price = .value) %>% mutate(Price_Index = (Fund_Price/ first(df_merged$fund_price)*100) %>% round(0), #making 2023 Dec value = 100 to see the changes(%) Fund_Price = round(Fund_Price, 3), Date = yearmonth(Date)) #Making a forecasting table library(kableExtra) tau_fc %>% kbl() %>% kable_styling(full_width = F, position = "center") %>% column_spec(column = 3, color= "white", background = spec_color(tau_fc$Price_Index, end = 0.7)) %>% row_spec(0:nrow(tau_fc), align = "c") %>% kable_minimal(html_ = "Bricolage Grotesque")
It looks like that will double its value at the end of the coming year.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.