Renewable energy in Europe
[This article was first published on r.iresmi.net, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Day 14 of 30DayMapChallenge: « Europe » (previously).
Using data from Eurostat we will try to show the spatio-temporal properties of this dataset by placing plots of the renewable energy share change on the map, for each country.
library(tidyverse) library(sf) library(janitor) library(ggspatial) library(glue) library(ggtext) # Parallel reduce by moodymudskipper # https://github.com/tidyverse/purrr/issues/163 # It will allow us to iterate on a dataframe and accumulate each plot on the map preduce <- function(.l, .f, ..., .init, .dir = c("forward", "backward")) { .dir <- match.arg(.dir) reduce(transpose(.l), function(x, y) exec(.f, x, !!!y, ...), .init = .init, .dir = .dir) }
There is a JSON API but this TSV is easier to manipulate…
# https://ec.europa.eu/eurostat/web/main/data/database # Share of renewable energy in gross final energy consumption by sector. Code: sdg_07_40 # https://ec.europa.eu/eurostat/databrowser/view/sdg_07_40/ renewable <- read_delim("https://ec.europa.eu/eurostat/estat-navtree-portlet-prod/BulkDownloadListing?file=data/sdg_07_40.tsv.gz", delim = "\t", na = ":", trim_ws = TRUE, name_repair = make_clean_names) |> separate(nrg_bal_unit_geo_time, into = c("nrg_bal", "unit", "geo"), sep = ",") |> pivot_longer(4:last_col(), names_to = "year", names_transform = parse_number, values_to = "pcent") |> filter(nrg_bal == "REN", str_length(geo) == 2) min_year <- min(renewable$year) max_year <- max(renewable$year) # Base map: NUTS # https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts#nuts21 nuts_0 <- read_sf("NUTS_RG_20M_2021_3035.shp") |> clean_names() |> filter(levl_code == 0) |> st_crop(c(xmin = 2500000, xmax = 7000000, ymin = 1330000, ymax = 5480000))
We nest the dataset by country and add each country plot as a ggplot grob in a new column.
make_ren_plot <- function(df) { { df |> ggplot(aes(year, pcent)) + geom_line(color = "springgreen3", linewidth = 1) + scale_x_continuous(limits = c(min_year, max_year)) + scale_y_continuous(limits = c(0, 100)) + theme_void() + theme(plot.background = element_rect(fill = NA, color = NA), axis.line.y = element_line(color = "#008B45")) } |> ggplotGrob() } renewable_plots <- renewable |> nest(.by = geo) |> mutate(p = map(data, make_ren_plot))
After building the base map, we get the “center’ of each country and add their plot.
base_map <- nuts_0 |> ggplot() + geom_sf() + labs(title = "Share of renewable energy - Europe", subtitle = glue("% of gross final energy consumption, {min_year} - {max_year}"), caption = glue("<b style='color:springgreen4'>vertical bar is 0-100%</b><br /> {st_crs(nuts_0)$Name}<br /> Data: EUROSTAT sdg_07_40<br /> Basemap: EUROSTAT NUTS 0 cropped<br /> https:∕∕r.iresmi.net/ {Sys.Date()}")) + coord_sf() + annotation_scale(height = unit(1, "mm"), text_col = "darkgrey", line_col = "grey", bar_cols = c("white", "grey")) + theme_void() + theme(plot.margin = margin(0, .3, 0.1, .3, "cm"), plot.caption = element_markdown(size = 6), legend.text = element_text(size = 7), plot.background = element_rect(color = NA, fill = "white")) # add one plot on a map add_ren_plot <- function(map, p, loc_x, loc_y) { map + annotation_custom(grob = p, xmin = loc_x, xmax = loc_x + 500000, ymin = loc_y, ymax = loc_y + 500000) } # build the final map nuts_0 |> st_point_on_surface() |> mutate(loc_x = st_coordinates(geometry)[, 1], loc_y = st_coordinates(geometry)[, 2]) |> select(cntr_code, loc_x, loc_y) |> st_drop_geometry() |> inner_join(renewable_plots, join_by(cntr_code == geo)) |> select(loc_x, loc_y, p) |> preduce(add_ren_plot, .init = base_map)
Still some work to do to get to 100% renewable in most of Europe…
To leave a comment for the author, please follow the link and comment on their blog: r.iresmi.net.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.