Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Week 47 — Puzzles no. 329–333
Puzzles
Author: ExcelBI
Puzzles:
# 329: content file
# 330: content file
# 331: content file
# 332: content file
# 333: content file
Lets dive into solutions!
Puzzle 329
In this puzzle we were asked to generate first 50 elements of Iccanobif sequence. Wait what? It is Fibonacci backwords… and that is exactly our goal to generate Fibonacci like sequence with one constraint: next element is a sum of previous two but with digits in reversed order.
As it looks hard, it really isn’t. And this solution is so short in base R, that translating it to another syntax would be just over complicating.
Loading data and libraries
library(tidyverse) library(readxl) library(stringi) test = read_excel("Iccanobif Numbers.xlsx", range = "A2:A51", col_names = FALSE) %>% pull()
Approach: Base R
reverse_digits <- function(n) { as.numeric(stri_reverse(as.character(n))) } generate_iccanobif <- function(N) { iccanobif <- c(0, 1) for (i in 3:N) { next_term <- reverse_digits(iccanobif[i - 1]) + reverse_digits(iccanobif[i - 2]) iccanobif <- c(iccanobif, next_term) } iccanobif } iccanobif_50 <- generate_iccanobif(50)
Validation
identical(iccanobif_50, test) #> [1] TRUE
Puzzle 330
In puzzle #330 we have sentences in table and our goal is to return matrix populated rowwise containing only words that were longer than average word in original sentence.
Load data and libraries
library(tidyverse) library(tidytext) library(readxl) library(data.table) input = read_excel("Average Word Length.xlsx", range= "A1:A10") test = read_excel("Average Word Length.xlsx", range = "B2:D5", col_names = F) colnames(test) = c("1", "2", "3")
Approach 1: tidyverse
result = input %>% mutate(number = row_number()) %>% unnest_tokens(word, Books) %>% group_by(number) %>% mutate(word_len = nchar(word)) %>% reframe(number, word, word_len, avg_len = mean(word_len)) %>% ungroup() %>% filter(word_len > avg_len) %>% select(word) %>% mutate(group = rep(1:4, each = 3)) %>% group_by(group) %>% mutate(row = row_number()) %>% pivot_wider(names_from = row, values_from = word) %>% ungroup() %>% select(-group) %>% mutate(across(everything(), ~ str_to_title(.x)))
Approach 2: data.table
input_dt <- setDT(copy(input)) input_dt[, number := .I] input_dt_long <- input_dt[, .(word = unlist(strsplit(Books, " "))), by = number] input_dt_long[, word_len := nchar(word)] input_dt_long[, avg_len := mean(word_len), by = number] input_dt_filtered <- input_dt_long[word_len > avg_len, .(word, number)] input_dt_filtered[, group := rep(1:4, each = 3, length.out = .N)] input_dt_filtered[, row := rep(1:3, times = 4, length.out = .N)] wider_dt <- dcast(input_dt_filtered, group ~ row, value.var = "word") setnames(wider_dt, old = names(wider_dt), new = c("group", "1", "2", "3")) wider_dt[, group := NULL]
Approach 3: base R
input_base <- input input_base$number = seq_along(input_base$Books) words_list_base = strsplit(input_base$Books, " ") words_df_base = setNames(data.frame(do.call(rbind, lapply(words_list_base, function(x) data.frame(word = x))), row.names = NULL), c("word")) words_df_base$number = rep(input_base$number, sapply(words_list_base, length)) words_df_base$word_len = nchar(as.character(words_df_base$word)) words_df_base$avg_len = ave(words_df_base$word_len, words_df_base$number, FUN = mean) filtered_df_base = subset(words_df_base, word_len > avg_len, select = c("word", "number")) filtered_df_base$group = rep(1:4, each = 3, length.out = nrow(filtered_df_base)) mat = matrix(filtered_df_base$word, nrow = 4, ncol = 3, byrow = TRUE) wider_df_base = as_tibble(as.data.frame(mat)) colnames(wider_df_base) = c("1", "2", "3") wider_df_base[] = lapply(wider_df_base, function(x) if(is.character(x)) tools::toTitleCase(x) else x)
Validation
identical(test, result) #> [1] TRUE identical(test, wider_dt) #> [1] TRUE identical(test, wider_df_base) #> [1] TRUE
Puzzle 331
In this puzzle we were asked to find which of given numbers can be represented as sum of two cubes.
Load data and libraries
library(tidyverse) library(readxl) library(data.table) input = read_excel("Sum of Cube of Two Numbers.xlsx", range = "A1:A10") test = read_excel("Sum of Cube of Two Numbers.xlsx", range = "B2:D6", col_names = c("Number", "Factor1", "Factor2"))
Approach 1: tidyverse
check_if_sum_of_cubes = function(number) { x = floor(number^(1/3)) range = data.frame(Number = number, Factor1 = 1:x) %>% mutate(diff = number - Factor1^3, is_cube = round(diff^(1/3))^3 == diff) %>% filter(is_cube) %>% mutate(Factor2 = diff^(1/3)) %>% slice(1) %>% select(Number, Factor1, Factor2) return(range) } result = map_dfr(input$Number, check_if_sum_of_cubes) %>% as_tibble()
Approach 2: data.table
check_if_sum_of_cubes_dt <- function(number) { x <- floor(number^(1/3)) DT <- CJ(Factor1 = 1:x, Number = number) DT[, `:=`(diff = Number - Factor1^3)] DT[, `:=`(is_cube = round((diff)^(1/3))^3 == diff, Factor2 = (diff)^(1/3))] result <- DT[is_cube == TRUE, .(Number, Factor1, Factor2)] result <- result[order(Factor1)][1] return(result) } input_numbers_dt <- as.vector(input$Number) result_dt <- rbindlist(lapply(input_numbers_dt, check_if_sum_of_cubes_dt)) result_dt <- as.data.frame(result_dt) %>% drop_na()
Approach 3: base R
check_if_sum_of_cubes_base <- function(number) { x <- floor(number^(1/3)) df <- expand.grid(Factor1 = 1:x, Number = number) df$diff <- df$Number - df$Factor1^3 df$is_cube <- round(df$diff^(1/3))^3 == df$diff df$Factor2 <- df$diff^(1/3) result <- df[df$is_cube, ] result <- result[order(result$Factor1), ] result <- result[1, c("Number", "Factor1", "Factor2")] return(result) } input_numbers <- as.vector(input$Number) result_base <- do.call("rbind", lapply(input_numbers, check_if_sum_of_cubes_base)) result_base <- as.data.frame(result_base) %>% drop_na()
Validation
Sometimes aligning all structures to be identical generate to much code. Then I we can also check it visually.
> test # A tibble: 5 × 3 Number Factor1 Factor2 <dbl> <dbl> <dbl> 1 35 2 3 2 855 7 8 3 3744 10 14 4 300827 4 67 5 90000576 44.0 448 > result # A tibble: 5 × 3 Number Factor1 Factor2 <dbl> <int> <dbl> 1 35 2 3 2 855 7 8 3 3744 10 14 4 300827 4 67 5 90000576 44 448 > result_base Number Factor1 Factor2 2 35 2 3 7 855 7 8 10 3744 10 14 4 300827 4 67 44 90000576 44 448 > result_dt Number Factor1 Factor2 1 35 2 3 2 855 7 8 3 3744 10 14 4 300827 4 67 5 90000576 44 448
Puzzle 332
One of the shortest solutions which I solved so far, but it is linked to the fact that there were new functions introduced in MS Excel. We had to find maximal and minimal value per group.
Load data and libraries
library(tidyverse) library(readxl) library(data.table) input = read_excel("Max Min.xlsx", range = "A1:B20") test = read_excel("Max Min.xlsx", range = "D2:F6")
Approach 1: tidyverse
result = input %>% group_by(Zone) %>% summarise(Max = max(Sales), Min = min(Sales))
Approach 2: data.table
input_dt = setDT(input) result_dt = input_dt[, .(Max = max(Sales), Min = min(Sales)), by = Zone][order(Zone)] result_dt = as_tibble(result_dt)
Approach 3: base R
result_base <- do.call(data.frame, aggregate(Sales ~ Zone, data = input, FUN = function(x) c(Max = max(x), Min = min(x)))) names(result_base) <- c("Zone","Max", "Min")
Validation
identical(test, result) #> [1] TRUE identical(test, result_dt) #> [1] TRUE identical(test, as_tibble(result_base)) #> [1] TRUE
Puzzle 333
As we all know words consists of letters, and in many words letters repeat itself. And that is the topic in this puzzle. We have words and we need to cut them… before second occurence of first repeating letter (bull becomes bul, excel becomes exc and so on).
Load data and libraries
library(tidyverse) library(readxl) library(data.table) input = read_excel("Extract String Before a Repeated Character.xlsx", range = "A1:A10") test = read_excel("Extract String Before a Repeated Character.xlsx", range = "B1:B10")
Approach 1: tidyverse
result = input %>% mutate(lett = str_split(str_to_lower(String), pattern = ""), reps = map(lett, ~ duplicated(.x)), first_reps = map_int(reps, ~ which(.x)[1]), `Answer Expected` = ifelse(!is.na(first_reps), str_sub(String, 1, first_reps-1), String)) %>% select(`Answer Expected`)
Approach 2: data.table
input_dt <- as.data.table(input) input_dt[, lett := strsplit(tolower(String), "")] input_dt[, reps := lapply(lett, function(x) duplicated(x))] input_dt[, first_reps := sapply(reps, function(x) { pos <- which(x)[1]; if (length(pos) > 0) pos else NA })] input_dt[, `Answer Expected` := ifelse(!is.na(first_reps), substr(String, 1, first_reps - 1), String)] result_dt <- input_dt$`Answer Expected`
Approach 3: base R
input_b <- input input_b$lett <- strsplit(tolower(input_b$String), "") input_b$reps <- lapply(input_b$lett, function(x) duplicated(x)) input_b$first_reps <- sapply(input_b$reps, function(x) { pos <- which(x)[1]; if (length(pos) > 0) pos else NA }) input_b$`Answer Expected` <- ifelse(!is.na(input_b$first_reps), substr(input_b$String, 1, input_b$first_reps - 1), input_b$String) result_b <- input_b$`Answer Expected`
Validation
identical(result, test) #> [1] TRUE identical(result_dt, test$`Answer Expected`) #> [1] TRUE identical(result_b, test$`Answer Expected`) #> [1] TRUE
Conclussion
Feel free to comment, share and contact me with advices, questions and your ideas how to improve anything.
R Solution for Excel Puzzles was originally published in Numbers around us on Medium, where people are continuing the conversation by highlighting and responding to this story.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.