Quasi-randomized nnetworks in Julia, Python and R
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
nnetsauce
, a package for quasi-randomized supervised learning (classification and regression), is currently available for R and Python. For more details on nnetsauce
, you can read these posts.
I’ve always wanted to port nnetsauce
to the Julia language. However, in the past few years, there was a little timing overhead (more precisely, a lag) when I tried to do that with Julia’s PyCall
, based on my Python source code. This overhead seems to have ‘disappeared’.
Julia language’s nnetsauce
is not a package yet, but you can already use nnetsauce
in Julia.
Here’s how I did it on Ubuntu Linux:
Contents
1 – Install Julia
Run (terminal):
wget https://julialang-s3.julialang.org/bin/linux/x64/1.9/julia-1.9.4-linux-x86_64.tar.gz
Run (terminal):
tar zxvf julia-1.9.4-linux-x86_64.tar.gz
Run (terminal)(This is VSCode, but use your favorite editor here):
code ~/.bashrc
Add to .bashrc
(last line):
export PATH="$PATH:julia-1.9.4/bin"
Run (terminal):
source ~/.bashrc
Run (terminal):
julia nnetsauce_example.jl
2 – Example using a nnetsauce classifier in Julia language
For Python users, notice that this is basically… Python ^^
using Pkg ENV["PYTHON"] = "" # replace with your Python path Pkg.add("PyCall") Pkg.build("PyCall") Pkg.add("Conda") Pkg.build("Conda") using PyCall using Conda Conda.add("pip") # Ensure pip is installed Conda.pip_interop(true) # Enable pip interop Conda.pip("install", "scikit-learn") # Install scikit-learn Conda.pip("install", "jax") # /!\ Only on Linux or macOS: Install jax Conda.pip("install", "jaxlib") # /!\ Only on Linux or macOS: Install jaxlib Conda.pip("install", "nnetsauce") # Install nnetsauce Conda.add("numpy") np = pyimport("numpy") ns = pyimport("nnetsauce") sklearn = pyimport("sklearn") # 1 - breast cancer dataset dataset = sklearn.datasets.load_breast_cancer() X = dataset["data"] y = dataset["target"] X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, test_size=0.2, random_state=123) clf = ns.Ridge2MultitaskClassifier(n_hidden_features=9, dropout=0.43, n_clusters=1, lambda1=1.24023438e+01, lambda2=7.30263672e+03) @time clf.fit(X=X_train, y=y_train) # timing? print("\n\n Model parameters: \n\n") print(clf.get_params()) print("\n\n Testing score: \n\n") # Classifier's accuracy print(clf.score(X_test, y_test)) # Must be: 0.9824561403508771 print("\n\n") # 2 - wine dataset dataset = sklearn.datasets.load_wine() X = dataset["data"] y = dataset["target"] X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, test_size=0.2, random_state=123) clf = ns.Ridge2MultitaskClassifier(n_hidden_features=15, dropout=0.1, n_clusters=3, type_clust="gmm") @time clf.fit(X=X_train, y=y_train) # timing? print("\n\n Model parameters: \n\n") print(clf.get_params()) print("\n\n Testing score: \n\n") # Classifier's accuracy print(clf.score(X_test, y_test)) # Must be 1.0 print("\n\n")
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.