Flow
[This article was first published on r.iresmi.net, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Day 17 of 30DayMapChallenge: « Flow » (previously).
Mapping the commuters to Lyon in France. Data comes from INSEE and is part of the national census.
Setup
library(tidyverse) library(sf) library(glue) library(janitor)
Data
Paris, Lyon and Marseille are subdivided in this dataset (by arrondissement); we filter out Lyon origins and keep only Lyon destinations and we aggregate the arrondissements for the 3 cities.
# Home-work commute in France 2019, by commune # https://www.insee.fr/fr/information/2383337 # https://www.insee.fr/fr/statistiques/6454112 hwc_file <- "base-csv-flux-mobilite-domicile-lieu-travail-2019.zip" if (!file.exists(hwc_file)) { download.file(paste0("https://www.insee.fr/fr/statistiques/fichier/6454112/", hwc_file), hwc_file) } hwc <- read_delim(hwc_file, delim = ";", locale = locale(decimal_mark = ".")) |> clean_names() |> filter(str_detect(dclt, "6938[1-9]"), !str_detect(codgeo, "6938[1-9]")) |> mutate(across(c(codgeo, dclt), ~ case_when(between(.x, "13201", "13216") ~ "13055", between(.x, "75101", "75120") ~ "75056", between(.x, "69381", "69389") ~ "69123", .default = .x))) |> group_by(codgeo, dclt) |> summarise(nbflux_c19_actocc15p = sum(nbflux_c19_actocc15p), .groups = "drop") # France communes and régions (polygons) # See https://r.iresmi.net/posts/2021/simplifying_polygons_layers/ for the data c("commune", "region") |> set_names() |> map(\(x) read_sf("~/data/adminexpress/adminexpress_cog_simpl_000_2022.gpkg", layer = x) |> filter(insee_reg > "06") |> st_transform("EPSG:2154")) |> list2env(envir = .GlobalEnv)
Build flow coordinates
# get coordinates for origin points com_orig <- commune |> st_point_on_surface() |> mutate(x = st_coordinates(geom)[, 1], y = st_coordinates(geom)[, 2]) |> select(insee_com, x, y) # we only need one destination point: Lyon com_dest <- com_orig |> filter(insee_com == "69123") # Add origine and destination coords to the commute table flow <- hwc |> left_join(com_orig, join_by(codgeo == insee_com)) |> left_join(com_dest, join_by(dclt == insee_com), suffix = c("_orig", "_dest"))
Map
ggplot(region) + geom_sf(color = "grey70", fill="grey95") + geom_curve(data = flow, aes(x = x_orig, y = y_orig, xend = x_dest, yend = y_dest, linewidth = nbflux_c19_actocc15p, alpha = nbflux_c19_actocc15p), color = "dodgerblue3", curvature = 0.2) + scale_linewidth_continuous(labels = scales::label_number(big.mark = " "), trans = "log10", breaks = c(10, 100, 1000, 10000), range = c(0.05, 3)) + scale_alpha_continuous(labels = scales::label_number(big.mark = " "), trans = "log10", breaks = c(10, 100, 1000, 10000), range = c(0.05, .4)) + labs(title = "Working flow to Lyon", subtitle = "2019", linewidth = "workers", alpha = "workers", caption = glue("https://www.iresmi.net {Sys.Date()} Base map from IGN Admin Express 2022 Data: INSEE 2019")) + theme_void() + theme(text = element_text(family = "Courier"), plot.margin = margin(0, .3, 0.1, .3, "cm"), plot.background = element_rect(color = NA, fill = "white"), plot.caption = element_text(size = 6))
The 2-hours commute from Paris by TGV seems popular…
To leave a comment for the author, please follow the link and comment on their blog: r.iresmi.net.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.