[This article was first published on R on Alan Yeung, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Combining case_when() and across()
If you want to use case_when()
and across()
different variables, then here is an example that can do this with the help of the get()
and cur_column()
functions.
library(tidyverse) iris_df <- as_tibble(iris) %>% mutate(flag_Petal.Length = as.integer(Petal.Length > 1.5), flag_Petal.Width = as.integer(Petal.Width > 0.2)) iris_df %>% mutate(across(c(Petal.Length, Petal.Width), ~case_when( get(glue::glue("flag_{cur_column()}")) == 1 ~ NA_real_, TRUE ~ .x ))) %>% select(contains("Petal")) ## # A tibble: 150 × 4 ## Petal.Length Petal.Width flag_Petal.Length flag_Petal.Width ## <dbl> <dbl> <int> <int> ## 1 1.4 0.2 0 0 ## 2 1.4 0.2 0 0 ## 3 1.3 0.2 0 0 ## 4 1.5 0.2 0 0 ## 5 1.4 0.2 0 0 ## 6 NA NA 1 1 ## 7 1.4 NA 0 1 ## 8 1.5 0.2 0 0 ## 9 1.4 0.2 0 0 ## 10 1.5 0.1 0 0 ## # ℹ 140 more rows
Is there any way to use this with a function from the rlang
packages instead of get()
? It’s a little beyond my current understanding of tidy evaluation but let me know in the comments if you know please.
Combining case_when() with if_any() and if_all()
The if_any()
and if_all()
functions can be used to save typing lots of variables (as these allow the use of tidyselect
helpers) within case_when()
.
df1 <- tibble(var1 = c(1, 0, 1, NA), var2 = c(1, 0, 0, NA)) df1 %>% mutate(category = case_when( if_any(c(var1, var2), ~.x > 0) ~ 1, if_all(c(var1, var2), is.na) ~ NA_real_, TRUE ~ 0 )) ## # A tibble: 4 × 3 ## var1 var2 category ## <dbl> <dbl> <dbl> ## 1 1 1 1 ## 2 0 0 0 ## 3 1 0 1 ## 4 NA NA NA
To leave a comment for the author, please follow the link and comment on their blog: R on Alan Yeung.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.