[This article was first published on Saturn Elephant, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
I translated to R the JavaScipt code for the Doyle spiral written by Robin Houston and kindly provided in this gist.
library(rootSolve) # for the function multiroot library(plotrix) # for the function draw.circle d_ <- function(z, t, p, q) { w <- z^(p/q) s <- (p*t + 2*pi)/q (z*cos(t) - w*cos(s))^2 + (z*sin(t) - w*sin(s))^2 } s_ <- function(z, p, q) { (z + z^(p/q))^2 } r_ <- function(z, t, p, q) { d_(z, t, p, q) / s_(z, p, q) } Doyle <- function(p, q) { f_ <- function(z, t) { r_(z, t, 0, 1) - r_(z, t, p, q) } g_ <- function(z, t) { r_(z, t, 0, 1) - r_(z^(p/q), (p*t + 2*pi)/q, 0, 1) } model <- function(x) c(F = f_(x[1], x[2]), G = g_(x[1], x[2])) ss <- multiroot(f = model, start = c(2, 0), maxiter = 1000, atol = 1e-6, rtol = 1e-6) z <- ss$root[1L] t <- ss$root[2L] r <- sqrt(r_(z, t, 0, 1)) a <- complex(real = z * cos(t), imaginary = z * sin(t)) coroot <- c("z" = z^(p/q), "t" = (p*t + 2*pi)/q) b <- complex( real = coroot["z"] * cos(coroot["t"]), imaginary = coroot["z"] * sin(coroot["t"]) ) list("a" = a, "b" = b, "r" = r, "mod_a" = z, "arg_a" = t, "q" = q) } spiral <- function(r, start_point, delta, opts, alpha, scale) { mod_delta <- Mod(delta) colors <- opts[["fill"]] min_d <- opts[["min_d"]] max_d <- opts[["max_d"]] w <- exp(1i * alpha) out <- matrix(nrow = 0L, ncol = 4L) # spiral outwards color_index <- opts[["i"]] q <- start_point mod_q <- Mod(q) while(mod_q < max_d) { col <- colors[color_index] center <- scale * q * w out <- rbind( out, c(Re(center), Im(center), r * scale * mod_q, color_index) ) draw.circle( Re(center), Im(center), r * scale * mod_q, col = col, border = col ) color_index <- ifelse(color_index < length(colors), color_index + 1, 1) q <- q * delta mod_q <- mod_q * mod_delta } # spiral inwards i <- opts[["i"]] color_index <- ifelse(i > 1, i-1, length(colors)) q <- start_point/delta mod_q <- Mod(q) while(mod_q > min_d) { col <- colors[color_index] center <- scale * q * w out <- rbind( out, c(Re(center), Im(center), r * scale * mod_q, color_index) ) draw.circle( Re(center), Im(center), r * scale * mod_q, col = col, border = col ) color_index <- ifelse(color_index > 1, color_index-1, length(colors)) q <- q / delta mod_q <- mod_q / mod_delta } out } frame <- function(t, root, max_d, limits = c(-max_d, max_d)) { scale <- root$mod_a^t alpha <- root$arg_a * t start <- root$a min_d <- 1/scale out <- matrix(nrow = 0L, ncol = 4L) par(mar = c(0, 0, 0, 0)) plot(NULL, asp = 1, xlim = limits, ylim = limits, xlab = NA, ylab = NA, axes = FALSE) for(i in 1:root$q) { cc <- spiral(root$r, start, root$a, list( fill = c("#49B49B", "#483352"), i = 1 + i %% 2, min_d = min_d, max_d = max_d ), alpha, scale) start <- start * root$b out <- rbind(out, cc) } colnames(out) <- c("x", "y", "r", "colIndex") out } # plot a Doyle spiral #### root <- Doyle(p = 8, q = 16) M <- frame(0, root, 600)
The frame
function generates a plot of a Doyle spiral:
It also returns a matrix providing the centers and the radii of the circles, and the color index of each circle. This allowed me to plot the Doyle spiral in 3D with rgl:
library(rgl) library(Rvcg) unitSphere <- vcgSphere(4) cols <- c("#49B49B", "#483352") open3d(windowRect = 50 + c(0, 0, 512, 512)) view3d(0, -55, zoom = 0.85) for(i in 1:nrow(M)) { sph <- translate3d( scale3d(unitSphere, M[i,"r"], M[i,"r"], M[i,"r"]), M[i, "x"], M[i,"y"], 0 ) shade3d(sph, color = cols[M[i, "colIndex"]]) } # animation #### movie3d(spin3d(axis = c(0, 0, 1), rpm = 10), duration = 6, fps = 10, movie = "zzpic", dir = ".", convert = FALSE, webshot = FALSE, startTime = 1/10) library(gifski) pngs <- Sys.glob("zzpic*.png") gifski( png_files = pngs, gif_file = "Doyle_8-16.gif", width = 512, height = 512, delay = 1/8 ) file.remove(pngs)
And also with POV-Ray:
To leave a comment for the author, please follow the link and comment on their blog: Saturn Elephant.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.