Site icon R-bloggers

Reading in Multiple Excel Sheets with lapply and {readxl}

[This article was first published on Steve's Data Tips and Tricks, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
< section id="intruduction" class="level1">

Intruduction

Reading in an Excel file with multiple sheets can be a daunting task, especially for users who are not familiar with the process. In this blog post, we will walk through a sample function that can be used to read in an Excel file with multiple sheets using the R programming language.

< section id="function" class="level1">

Function

The function we will be using is called excel_sheet_reader(). This function takes one argument: filename, which is the name of the Excel file we want to read in. This function, since it is using the {readxl} package will automatically read that data to a tibble.

< section id="example" class="level1">

Example

Here is the function:

excel_sheet_reader <- function(filename) {
  sheets <- excel_sheets(filename)
  x <- lapply(sheets, function(X) read_excel(filename, sheet = X))
  names(x) <- sheets
  x
}

The first thing the excel_sheet_reader() function does is to determine the names of all the sheets in the Excel file using the excel_sheets function from the readxl package. This function returns a character vector containing the names of all the sheets in the Excel file.

sheets <- excel_sheets(filename)

Next, the function uses the lapply function to loop through all the sheet names and read in each sheet using the read_excel() function, also from the readxl package. This function takes two arguments: filename, which is the name of the Excel file, and sheet, which is the name of the sheet we want to read in. The lapply function returns a list containing all the sheets.

x <- lapply(sheets, function(X) read_excel(filename, sheet = X))

Finally, the function uses the names function to assign the sheet names to the list of sheets and returns the list.

names(x) <- sheets
x

Now that we have explained the excel_sheet_reader() function, let’s use it to read in the iris and mtcars datasets.

library(healthyR)
library(dplyr)
library(writexl)
library(readxl)

iris |>
  named_item_list(Species) |>
  write_xlsx(path = "iris.xlsx")

mtcars |>
  named_item_list(cyl) |>
  write_xlsx(path = "mtcars.xlsx")

iris_sheets <- excel_sheet_reader("iris.xlsx")
mtcars_sheets <- excel_sheet_reader("mtcars.xlsx")

Now lets see the structure of each file.

iris_sheets
$setosa
# A tibble: 50 × 5
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>       <dbl>        <dbl>       <dbl> <chr>  
 1          5.1         3.5          1.4         0.2 setosa 
 2          4.9         3            1.4         0.2 setosa 
 3          4.7         3.2          1.3         0.2 setosa 
 4          4.6         3.1          1.5         0.2 setosa 
 5          5           3.6          1.4         0.2 setosa 
 6          5.4         3.9          1.7         0.4 setosa 
 7          4.6         3.4          1.4         0.3 setosa 
 8          5           3.4          1.5         0.2 setosa 
 9          4.4         2.9          1.4         0.2 setosa 
10          4.9         3.1          1.5         0.1 setosa 
# ℹ 40 more rows

$versicolor
# A tibble: 50 × 5
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
          <dbl>       <dbl>        <dbl>       <dbl> <chr>     
 1          7           3.2          4.7         1.4 versicolor
 2          6.4         3.2          4.5         1.5 versicolor
 3          6.9         3.1          4.9         1.5 versicolor
 4          5.5         2.3          4           1.3 versicolor
 5          6.5         2.8          4.6         1.5 versicolor
 6          5.7         2.8          4.5         1.3 versicolor
 7          6.3         3.3          4.7         1.6 versicolor
 8          4.9         2.4          3.3         1   versicolor
 9          6.6         2.9          4.6         1.3 versicolor
10          5.2         2.7          3.9         1.4 versicolor
# ℹ 40 more rows

$virginica
# A tibble: 50 × 5
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species  
          <dbl>       <dbl>        <dbl>       <dbl> <chr>    
 1          6.3         3.3          6           2.5 virginica
 2          5.8         2.7          5.1         1.9 virginica
 3          7.1         3            5.9         2.1 virginica
 4          6.3         2.9          5.6         1.8 virginica
 5          6.5         3            5.8         2.2 virginica
 6          7.6         3            6.6         2.1 virginica
 7          4.9         2.5          4.5         1.7 virginica
 8          7.3         2.9          6.3         1.8 virginica
 9          6.7         2.5          5.8         1.8 virginica
10          7.2         3.6          6.1         2.5 virginica
# ℹ 40 more rows

Now mtcars_sheets

mtcars_sheets
$`4`
# A tibble: 11 × 11
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1  22.8     4 108      93  3.85  2.32  18.6     1     1     4     1
 2  24.4     4 147.     62  3.69  3.19  20       1     0     4     2
 3  22.8     4 141.     95  3.92  3.15  22.9     1     0     4     2
 4  32.4     4  78.7    66  4.08  2.2   19.5     1     1     4     1
 5  30.4     4  75.7    52  4.93  1.62  18.5     1     1     4     2
 6  33.9     4  71.1    65  4.22  1.84  19.9     1     1     4     1
 7  21.5     4 120.     97  3.7   2.46  20.0     1     0     3     1
 8  27.3     4  79      66  4.08  1.94  18.9     1     1     4     1
 9  26       4 120.     91  4.43  2.14  16.7     0     1     5     2
10  30.4     4  95.1   113  3.77  1.51  16.9     1     1     5     2
11  21.4     4 121     109  4.11  2.78  18.6     1     1     4     2

$`6`
# A tibble: 7 × 11
    mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
3  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
4  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
5  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
6  17.8     6  168.   123  3.92  3.44  18.9     1     0     4     4
7  19.7     6  145    175  3.62  2.77  15.5     0     1     5     6

$`8`
# A tibble: 14 × 11
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
 2  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
 3  16.4     8  276.   180  3.07  4.07  17.4     0     0     3     3
 4  17.3     8  276.   180  3.07  3.73  17.6     0     0     3     3
 5  15.2     8  276.   180  3.07  3.78  18       0     0     3     3
 6  10.4     8  472    205  2.93  5.25  18.0     0     0     3     4
 7  10.4     8  460    215  3     5.42  17.8     0     0     3     4
 8  14.7     8  440    230  3.23  5.34  17.4     0     0     3     4
 9  15.5     8  318    150  2.76  3.52  16.9     0     0     3     2
10  15.2     8  304    150  3.15  3.44  17.3     0     0     3     2
11  13.3     8  350    245  3.73  3.84  15.4     0     0     3     4
12  19.2     8  400    175  3.08  3.84  17.0     0     0     3     2
13  15.8     8  351    264  4.22  3.17  14.5     0     1     5     4
14  15       8  301    335  3.54  3.57  14.6     0     1     5     8

And that’s it! Hope this has been helpful!

To leave a comment for the author, please follow the link and comment on their blog: Steve's Data Tips and Tricks.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Exit mobile version