Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Googling “heatmap format excel” returns a lot of results. Here we will see how to do a heatmap formatting with a DT table in R.
The dataset we use provides the average monthly temperatures over a year for some cities in USA. It is available in a CSV file here.
The table is in long format. Below we turn it into a table in wide format. We also convert the temperatures to Celsius degrees and we rename the months which are given as numbers in the original data.
# read the CSV data dat0 <- read.csv("TempCitiesUSA.csv") # it is in long format: head(dat0) ## state city month temp.f ## 1 AK ANCHORAGE 1 15.8 ## 2 AK ANCHORAGE 2 18.7 ## 3 AK ANCHORAGE 3 25.9 ## 4 AK ANCHORAGE 4 36.3 ## 5 AK ANCHORAGE 5 46.9 ## 6 AK ANCHORAGE 6 54.7 # I prefer Celsius degrees dat0[["temp.f"]] <- round((dat0[["temp.f"]] - 32) / 1.8, digits = 1L) # convert to wide format library(tidyr) dat <- dat0 %>% pivot_wider( names_from = month, values_from = temp.f ) # replace the month numbers in the column names colnames(dat)[3:14] <- month.abb # have a look pillar::glimpse(dat, width = 65) ## Rows: 261 ## Columns: 14 ## $ state <chr> "AK", "AK", "AK", "AK", "AK", "AK", "AK", "AK", "… ## $ city <chr> "ANCHORAGE", "ANNETTE", "BARROW", "BETHEL", "FAIR… ## $ Jan <dbl> -9.0, 1.7, -25.4, -14.1, -23.2, -4.8, -3.5, -9.2,… ## $ Feb <dbl> -7.4, 2.8, -26.6, -13.6, -19.9, -3.9, -1.7, -9.1,… ## $ Mar <dbl> -3.4, 4.2, -25.4, -9.7, -11.6, -1.4, 0.9, -4.7, 0… ## $ Apr <dbl> 2.4, 6.6, -18.1, -3.4, -0.2, 2.4, 4.9, 0.6, 2.9, … ## $ May <dbl> 8.3, 9.7, -6.6, 5.2, 9.3, 6.5, 8.8, 6.4, 6.4, -0.… ## $ Jun <dbl> 12.6, 12.4, 1.7, 10.8, 15.4, 10.0, 12.2, 10.5, 9.… ## $ Jul <dbl> 14.7, 14.6, 4.7, 13.3, 16.9, 12.3, 13.8, 13.2, 12… ## $ Aug <dbl> 13.6, 14.8, 3.7, 12.0, 13.4, 12.1, 13.2, 12.7, 12… ## $ Sep <dbl> 9.0, 12.1, -0.4, 7.4, 6.9, 8.8, 10.0, 8.7, 9.7, 5… ## $ Oct <dbl> 1.2, 8.1, -9.7, -1.1, -4.7, 3.2, 5.7, 0.7, 4.6, -… ## $ Nov <dbl> -5.7, 4.3, -18.3, -8.1, -16.5, -1.4, 0.7, -4.9, 1… ## $ Dec <dbl> -8.1, 2.4, -23.7, -12.6, -21.1, -3.4, -1.8, -8.2,…
We will use the lowest temperature and the highest temperature later.
# get the lowest and highest temperatures lowest <- min(dat0[["temp.f"]]) highest <- max(dat0[["temp.f"]])
Now let’s detail our manipulation for one column. We map the temperatures to the interval \((0,1)\), in such a way that \(0\) is sent to \(0.5\).
# let's detail for one column, January x <- dat[["Jan"]] # function to map from (lowest, highest) to (0, 1), mapping 0 to 0.5 interpfun <- splinefun( c(lowest, 0, highest), c(0, 0.5, 1) ) # map the January data y <- interpfun(x)
Now we map each value of y
to a color, such that
\(0.5\) is sent to white.
# function mapping (0, 1) to a color; 0.5 is sent to white colfunc <- colorRamp(c("blue", "white", "red")) # get the colors for January cols <- colfunc(y) # these are rgb codes, we convert them to hex codes clrs <- rgb(cols[, 1L], cols[, 2L], cols[, 3L], maxColorValue = 255)
In this way the negative temperatures will be colored in blue and the positive temperatures in red.
Now we apply this manipulation for each month.
# now we perform this stuff for each month Colors <- lapply(dat[, month.abb], function(x) { y <- interpfun(x) cols <- colfunc(y) rgb(cols[, 1L], cols[, 2L], cols[, 3L], maxColorValue = 255) }) # have a look str(Colors) ## List of 12 ## $ Jan: chr [1:261] "#AEAEFF" "#FFF0F0" "#0C0CFF" "#7E7EFF" ... ## $ Feb: chr [1:261] "#BDBDFF" "#FFE7E7" "#0000FF" "#8282FF" ... ## $ Mar: chr [1:261] "#E1E1FF" "#FFDBDB" "#0C0CFF" "#A7A7FF" ... ## $ Apr: chr [1:261] "#FFEAEA" "#FFC7C7" "#5757FF" "#E1E1FF" ... ## $ May: chr [1:261] "#FFB9B9" "#FFAEAE" "#C4C4FF" "#FFD3D3" ... ## $ Jun: chr [1:261] "#FF9797" "#FF9999" "#FFF0F0" "#FFA5A5" ... ## $ Jul: chr [1:261] "#FF8787" "#FF8888" "#FFD7D7" "#FF9292" ... ## $ Aug: chr [1:261] "#FF9090" "#FF8787" "#FFDFDF" "#FF9C9C" ... ## $ Sep: chr [1:261] "#FFB4B4" "#FF9B9B" "#FBFBFF" "#FFC1C1" ... ## $ Oct: chr [1:261] "#FFF4F4" "#FFBBBB" "#A7A7FF" "#F5F5FF" ... ## $ Nov: chr [1:261] "#CCCCFF" "#FFDADA" "#5555FF" "#B6B6FF" ... ## $ Dec: chr [1:261] "#B6B6FF" "#FFEAEA" "#1E1EFF" "#8C8CFF" ...
Now let’s do the DT table. I use the RowGroup extension to group the data by state (the 0-th column in JavaScript).
library(DT) dtable <- datatable( dat, rownames = FALSE, extensions = "RowGroup", options = list( rowGroup = list(dataSrc = list(0)), columnDefs = list( # hide the grouping column list(targets = 0, visible = FALSE) ) ) )
And now we format this table.
for(month in month.abb) { dtable <- dtable %>% formatStyle( month, backgroundColor = styleEqual(dat[[month]], Colors[[month]]) ) }
That’s done.
dtable
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.