[This article was first published on Steve's Data Tips and Tricks, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
< section id="introduction" class="level1">
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Introduction
So I was challanged by Adrian Antico to learn data.table
, so yesterday I started with a single function from my package {TidyDensity}
called tidy_bernoulli().
So let’s see how I did (hint, works but needs a lot of improvement, so I’ll learn it.)
< section id="function" class="level1">Function
Let’s see the function in data.table
library(data.table) library(tidyr) library(stats) library(purrr) new_func <- function(num_sims, n, pr) { # Create a data.table with one row per simulation sim_data <- data.table(sim_number = factor(seq(1, num_sims, 1))) # Group the data by sim_number and add columns for x and y sim_data[, `:=` ( x = list(1:n), y = list(stats::rbinom(n = n, size = 1, prob = pr)) ), by = sim_number] # Compute the density of the y values and add columns for dx and dy sim_data[, `:=` ( d = list(density(unlist(y), n = n)[c("x", "y")] |> set_names("dx", "dy") |> as_tibble()) ), by = sim_number] # Compute the p-values for the y values and add a column for p sim_data[, `:=` ( p = list(stats::pbinom(unlist(y), size = 1, prob = pr)) ), by = sim_number] # Compute the q-values for the p-values and add a column for q sim_data[, `:=` ( q = list(stats::qbinom(unlist(p), size = 1, prob = pr)) ), by = sim_number] # Unnest the columns for x, y, d, p, and q sim_data <- sim_data[, unnest( .SD, cols = c("x", "y", "d", "p", "q") ), by = sim_number] # Remove the grouping sim_data[, sim_number := as.factor(sim_number)] return(sim_data) }
Example
Now, let’s see the output of the original function tidy_bernoulli() and new_func().
library(TidyDensity) n <- 50 pr <- 0.1 sims <- 5 set.seed(123) tb <- tidy_bernoulli(.n = n, .prob = pr, .num_sims = sims) set.seed(123) nf <- new_func(n = n, num_sims = sims, pr = pr) print(tb)
# A tibble: 250 × 7 sim_number x y dx dy p q <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> 1 1 1 0 -0.405 0.0292 0.9 0 2 1 2 0 -0.368 0.0637 0.9 0 3 1 3 0 -0.331 0.129 0.9 0 4 1 4 0 -0.294 0.243 0.9 0 5 1 5 1 -0.258 0.424 1 1 6 1 6 0 -0.221 0.688 0.9 0 7 1 7 0 -0.184 1.03 0.9 0 8 1 8 0 -0.147 1.44 0.9 0 9 1 9 0 -0.110 1.87 0.9 0 10 1 10 0 -0.0727 2.25 0.9 0 # … with 240 more rows
print(nf)
sim_number x y dx dy p q 1: 1 1 0 -0.4053113 0.029196114 0.9 0 2: 1 2 0 -0.3683598 0.063683226 0.9 0 3: 1 3 0 -0.3314083 0.129227066 0.9 0 4: 1 4 0 -0.2944568 0.242967496 0.9 0 5: 1 5 1 -0.2575054 0.424395426 1.0 1 --- 246: 5 46 0 1.2575054 0.057872104 0.9 0 247: 5 47 0 1.2944568 0.033131931 0.9 0 248: 5 48 1 1.3314083 0.017621873 1.0 1 249: 5 49 1 1.3683598 0.008684076 1.0 1 250: 5 50 0 1.4053113 0.003981288 0.9 0
Ok so at least the output is identical which is a good sign. Now let’s benchmark the two solutions.
library(rbenchmark) library(dplyr) benchmark( "original" = { tidy_bernoulli(.n = n, .prob = pr, .num_sims = sims) }, "data.table" = { new_func(n = n, pr = pr, num_sims = sims) }, replications = 100, columns = c("test","replications","elapsed","relative","user.self","sys.self" ) ) |> arrange(relative)
test replications elapsed relative user.self sys.self 1 original 100 3.29 1.00 2.51 0.08 2 data.table 100 4.64 1.41 3.34 0.04
Yeah, needs some work but it’s a start.
To leave a comment for the author, please follow the link and comment on their blog: Steve's Data Tips and Tricks.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.