partial rankings and aggregate ranks

[This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

When interviewing impressive applicants from a stunning variety of places and background for fellows in our Data Science for Social Good program (in Warwick and Kaiserslautern) this summer, we came through the common conundrum of comparing ranks while each of us only meeting a subset of the candidates. Over a free morning, I briefly thought of the problem (while swimming) and then wrote a short R code to infer about an aggregate ranking, ρ, based on a simple model, namely a Poisson distribution on the distance between an individual’s ranking and the aggregate

d(r_i,\rho)\sim\mathcal P(\lambda)

a uniform distribution on the missing ranks as well as on the aggregate, and a non-informative prior on λ. Leading to a three step Gibbs sampler for the completion and the simulation of ρ and λ.

I am aware that the problem has been tackled in many different ways, including Bayesian ones (as in Deng et al., 2014) and local ones, but this was a fun exercise. Albeit we did not use any model in the end!

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)