Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In this post, I provide some R code which generates a mesh of the Mandelbulb, a well-known 3D fractal.
The Mandelbulb is an isosurface, and I use the rmarchingcubes package to get a mesh of this isosurface. Since the Mandelbulb has many details, a thin grid of the voxel space is necessary, and that is why I use Rcpp to generate the voxel. Here is the C++ code:
// file mandelbulb.cpp #include <Rcpp.h> using namespace Rcpp; double mandelbulb0( double x, double y, double z, const unsigned power, const double phase ) { const double x0 = x; const double y0 = y; const double z0 = z; const double k = power; double r, rkm1, rk, theta, phi; double dr = 1.0; int i; for(i = 0; i < 10; i++) { r = sqrt(x*x + y*y + z*z); if(r > 2) { return 2.0 * r * log(r) / dr; } rkm1 = pow(r, k - 1.0); dr = k * rkm1 * dr + 1.0; theta = k * atan2(sqrt(x*x + y*y), z) + phase; phi = k * atan2(y, x); rk = rkm1 * r; x = rk * cos(phi) * sin(theta) + x0; y = rk * sin(phi) * sin(theta) + y0; z = rk * cos(theta) + z0; } return 0.0; } // [[Rcpp::export]] NumericVector mandelbulb( const double m, const double M, const unsigned n, const unsigned power, const double phase ) { NumericVector out(n * n * n); const double h = (M - m) / (n - 1); double x, y, z; unsigned i, j, k; unsigned l = 0; for(i = 0; i < n; i++) { x = m + i*h; for(j = 0; j < n; j++) { y = m + j*h; for(k = 0; k < n; k++) { z = m + k*h; out(l) = mandelbulb0(x, y, z, power, phase); l++; } } } out.attr("dim") = Dimension(n, n, n); return out; }
In fact, there are several Mandelbulb, each corresponding to a value of
the power
argument in the above code. The most popular one
is the one with power=8
. At the end of this post, I’ll show
you the effect of the phase
argument.
Now here is the R code which generates the mesh:
Rcpp::sourceCpp("mandelbulb.cpp") library(rmarchingcubes) library(rgl) n <- 512L # more than enough x <- y <- z <- seq(-1.2, 1.2, length.out = n) voxel <- mandelbulb(-1.2, 1.2, n, 8L, 0) ctr <- contour3d(voxel, level = 0.01, x = x, y = y, z = z) mesh <- tmesh3d( vertices = t(ctr[["vertices"]]), indices = t(ctr[["triangles"]]), normals = ctr[["normals"]], homogeneous = FALSE )
This mesh can be plotted with rgl. But let’s add some color before. I like the ‘klingon’ color palette of the trekcolors package.
library(trekcolors) fpalette <- colorRamp(trek_pal("klingon", reverse = TRUE)) d2 <- apply(mesh[["vb"]][-4L, ], 2L, crossprod) d2 <- (d2 - min(d2)) / diff(range(d2)) RGB <- fpalette(d2) mesh[["material"]] <- list( "color" = rgb(RGB[, 1L], RGB[, 2L], RGB[, 3L], maxColorValue = 255) ) open3d(windowRect = c(50, 50, 562, 562), zoom = 0.7) shade3d(mesh, shininess = 128)
The animation below shows the effect of the phase
argument,
varying from \(0\) to
\(2\pi\):
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.