A (kind of) plasma effect in R

[This article was first published on Saturn Elephant, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I found such an algorithm on Paul Bourke’s website:

  • take a random matrix \(M\) of size \(n \times n\) (we’ll take \(n=400\)), real or complex;

  • compute the discrete Fourier transform of \(M\), this gives a complex matrix \(FT\) of size \(n \times n\);

  • for each pair \((i,j)\) of indices, multiply the entry \(FT_{ij}\) of \(FT\) by
    \[ \exp\Bigl(-\frac{{(i/n-0.5)}^2 + {(j/n-0.5)}^2}{0.025^2} \Bigr); \]

  • finally, take the inverse discrete Fourier transform of the obtained matrix, and map the resulting matrix to an image by associating a color to each complex number.

Here is some code producing the above algorithm:

library(cooltools)  # for the dft() function (discrete Fourier transform)
library(RcppColors) # for the colorMap1() function

fplasma1 <- function(n = 400L, gaussianMean = -50, gaussianSD = 5) {
  M <- matrix(
    rnorm(n*n, gaussianMean, gaussianSD), 
    nrow = n, ncol = n
  )
  FT <- dft(M)
  for(i in seq(n)) {
    for(j in seq(n)) {
      FT[i, j] <- FT[i, j] * 
        exp(-((i/n - 0.5)^2 + (j/n - 0.5)^2) / 0.025^2)
    }
  }
  IFT <- dft(FT, inverse = TRUE)
  colorMap1(IFT, reverse = c(FALSE, FALSE, TRUE))
}

Let’s see a first image:

img <- fplasma1()
opar <- par(mar = c(0, 0, 0, 0))
plot(
  NULL, xlim = c(0, 1), ylim = c(0, 1), asp = 1, 
  xlab = NA, ylab = NA, axes = FALSE, xaxs = "i", yaxs = "i"
)
rasterImage(img, 0, 0, 1, 1)

par(opar)

And more images:

You can play with the parameters to obtain something different.

Below I take the first image and I alter the colors by exchanging the green part with the blue part and then by darkening:

library(colorspace) # for the darken() function
alterColor <- function(col) {
  RGB <- col2rgb(col)
  darken(
    rgb(RGB[1, ], RGB[3, ], RGB[2, ], maxColorValue = 255),
    amount = 0.5
  )
}

img      <- alterColor(img)
dim(img) <- c(400L, 400L)

Looks like a camouflage.

Note that the images are doubly periodic, so you can map them to a torus.

Now let’s do an animation. The fplasma2 function below does the same thing as fplasma1 after adding a number to the matrix \(M\), which will range from \(-1\) to \(1\).

fplasma2 <- function(M, t) {
  M <- M + sinpi(t / 64) # t will run from 1 to 128
  FT <- dft(M)
  n <- nrow(M)
  for(i in seq(n)) {
    for(j in seq(n)) {
      FT[i, j] <- FT[i, j] * 
        exp(-((i/n - 0.5)^2 + (j/n - 0.5)^2) / 0.025^2)
    }
  }
  IFT <- dft(FT, inverse = TRUE)
  colorMap1(IFT, reverse = c(FALSE, FALSE, TRUE))
}

Here is how to use this function to make an animation:

n <- 400L
M <- matrix(rnorm(n*n, -50, 5), nrow = n, ncol = n)

for(t in 1:128) {
  img <- fplasma2(M, t)
  fl <- sprintf("img%03d.png", t)
  png(file = fl, width = 400, height = 400)
  par(mar = c(0, 0, 0, 0))
  plot(
    NULL, xlim = c(0, 1), ylim = c(0, 1), asp = 1,
    xlab = NA, ylab = NA, axes = FALSE, xaxs = "i", yaxs = "i"
  )
  rasterImage(img, 0, 0, 1, 1)
  dev.off()
}

library(gifski)
pngFiles <- Sys.glob("img*.png")
gifski(
  png_files = pngFiles,
  gif_file  = "plasmaFourier_anim1.gif",
  width = 400, height = 400,
  delay  = 1/10
)
file.remove(pngFiles)

Observe the black and blue background: it does not move. If instead of adding a number in the interval \([-1, 1]\), we add a number in the complex interval \([-i, i]\), then we observe the opposite behavior:

fplasma3 <- function(M, t) {
  M <- M + 1i * sinpi(t / 64) # t will run from 1 to 128
  FT <- dft(M)
  n <- nrow(M)
  for(i in seq(n)) {
    for(j in seq(n)) {
      FT[i, j] <- FT[i, j] * 
        exp(-((i/n - 0.5)^2 + (j/n - 0.5)^2) / 0.025^2)
    }
  }
  IFT <- dft(FT, inverse = TRUE)
  colorMap1(IFT, reverse = c(FALSE, FALSE, TRUE))
}

To leave a comment for the author, please follow the link and comment on their blog: Saturn Elephant.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)