[This article was first published on r.iresmi.net, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
library(tidyverse) library(sf) library(glue) library(rnaturalearth) library(units) # grams of carbon dioxide-equivalents per passenger kilometer # https://en.wikipedia.org/wiki/Fuel_economy_in_aircraft co2_eq <- set_units(88, g/km) # countries map from Naturalearth countries <- ne_countries(scale = "small", returnclass = "sf") # airport code and coordinates to geolocate itineraries airport <- read_csv("https://raw.githubusercontent.com/jpatokal/openflights/master/data/airports.dat", col_names = c("airport", "name", "city", "country", "iata", "icao", "latitude", "longitude", "altitude", "timezone", "dst", "tz", "type", "source")) %>% # Add Kai Tak, missig from the airport data add_row(iata = "HKGX", name = "Kai Tak", city = "Hong Kong", latitude = 22.328611, longitude = 114.194167) # itineraries flight <- read_delim("from-to LYS-LHR LHR-LYS LYS-BOD LYS-BOD LYS-BOD LYS-BOD BOD-LYS BOD-LYS BOD-LYS LYS-BOD BOD-LYS BOD-LGW LHR-JNB CPT-JNB JNB-LHR LHR-ORY BOD-ORY CDG-HKGX HKGX-PER SYD-HKGX HKGX-CDG ORY-CAY CAY-BEL BEL-BSB BSB-MAO MAO-VVI VVI-LPB LPB-MAO MAO-BEL BEL-CAY CAY-XAU XAU-CAY CAY-XAU XAU-CAY CAY-XAU XAU-CAY CAY-ORY NCE-MXP MXP-NCE CDG-CAY CAY-MPY MPY-CAY CAY-CDG CDG-HKG HKG-SYD SYD-HKG HKG-SYD TLN-ORY CDG-CPH CPH-ORY ORY-TLN CDG-YYZ YYZ-SFO SFO-YYZ YYZ-CDG ORY-TLN TLN-ORY LYS-AMS AMS-SHJ SHJ-KTM KTM-SHJ SHJ-AMS AMS-LYS CDG-AUH AUH-MCT MCT-KTM KTM-PKR PKR-KTM KTM-MCT MCT-AUH AUH-CDG GVA-FCO FCO-GVA CDG-RUN RUN-CDG GVA-KEF KEF-GVA CDG-ARN ARN-KRN KRN-ARN ARN-CDG CDG-RUN RUN-CDG", delim = "-") # geolocate flight_geo <- flight %>% left_join(airport, by = c("from" = "iata")) %>% left_join(airport, by = c("to" = "iata"), suffix = c("_from", "_to")) # create lines flight_lines <- flight_geo %>% mutate(line = glue("LINESTRING ({longitude_from} {latitude_from}, {longitude_to} {latitude_to})")) %>% st_as_sf(wkt = "line", crs = "EPSG:4326") # create great circles and compute costs flight_geo_gc <- flight_lines %>% st_segmentize(set_units(100, km)) %>% mutate(distance = set_units(st_length(line), km), co2 = set_units(distance * co2_eq, t)) # totals total_flight <- flight_geo_gc %>% st_drop_geometry() %>% summarise(total_distance = sum(distance, na.rm = TRUE), total_co2 = sum(co2, na.rm = TRUE)) # map ggplot() + geom_sf(data = countries, fill = "lightgrey", color = "lightgrey") + geom_sf(data = flight_geo_gc, color = "red") + # geom_sf(data = flight_lines, color = "blue") + labs(title = "My air travel carbon footprint 1993-2020", subtitle = glue("{round(total_flight$total_distance, -2)} km - {round(total_flight$total_co2, 1)} teqCO₂")) + theme_minimal()
To leave a comment for the author, please follow the link and comment on their blog: r.iresmi.net.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.