Paste R plot image into MS Word

[This article was first published on SH Fintech Modeling, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
This post explains how to paste R plot images into MS Word with some additional information such as title, description, and data table. This can be done by using the officer R package.


Paste R plot image into MS Word with additional information


The officer R package makes an access to and manipulates ‘Microsoft Word’ and ‘Microsoft PowerPoint’ documents from R. Specifically, R objects such as a plot image, string and so on can are pasted into MS Word or PowerPoint.

The focus of this post centers on pasting R plot images into Word as follows.

Paste R plot image into MS Word


Useful functions of officer R package


How to use the officer R package consists of the following structure.

1
2
3
4
5
doc < read_docx()
 
doc < body_add(doc, ….)
 
print(doc, target = filename)
cs


First, read_docx() function create an internal Word object and return it.

Second, by calling body_add() function with different arguments (…) several times as needed, a variety of contents are pasted into Word. The arguments (…) is dependent on which type of R components are considered. For example, the argument for a plot and that of a table (data.frame) are as follows respectively.

1
2
3
4
5
doc < body_add(doc, dataframe, 
                style = “table_template”)
 
doc < body_add(doc, plot_instr(
                code = barplot(1:5, col = 2:6)))
cs


For a plot image, body_add() function takes graph-generating codes with plot_instr() sub component.

Finally print() function save the internal Word object as a file with a user-defined filename. For more detailed information, please see the manual of the officer R package. It provides many useful examples.



R code


The following R code pastes plot images into MS Word with a title, description, and data table. I show two cases by using direct commands or a function encapsulating that commands.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#========================================================#
# Quantitative ALM, Financial Econometrics & Derivatives 
# ML/DL using R, Python, Tensorflow by Sang-Heon Lee 
#
# https://kiandlee.blogspot.com
#——————————————————–#
# Paste plot images to MS Word
#========================================================#
 
graphics.off(); rm(list = ls())
 
library(quantmod) # getSymbols
library(officer)  
 
setwd(“D:”)
 
#————————————————
# read S&P 500 and NASDAQ index
#————————————————
 
sdate < as.Date(“2010-01-01”)
edate < as.Date(“2020-01-01”)
getSymbols(“^GSPC”from=sdate, to=edate)
getSymbols(“^IXIC”from=sdate, to=edate) 
df < data.frame( time(GSPC[,6]), GSPC[,6], IXIC[,6])
 
rownames(df) < NULL
colnames(df) < c(“date”“GSPC”“NDAQ”)
 
 
#———————————————————–
# draw graph by direct commands
#———————————————————–
 
# figure 1
x11(width=16/2, height=5)
matplot(df$date, df$GSPC, main = “S&P 500”, type = “l”
        lwd = 3, col = “blue”, xlab=“Date”, ylab=“Index”)
legend(‘topleft’,legend=“S&P 500”, col=“blue”,
       lty=1,lwd=3, box.lty=0)
 
# figure 2
x11(width=16/2, height=5)
par(mfrow=c(1,2), mar = c(6432)) # bltr
matplot(df$date, df$GSPC, main = “S&P 500”, type = “l”
        lwd = 3, col = “blue” , xlab=“Date”, ylab=“Index”)
matplot(df$date, df$GSPC, main = “Nasdaq” , type = “l”
        lwd = 3, col = “green”, xlab=“Date”, ylab=“Index”)
legend(‘topleft’,legend=c(“S&P 500”“Nasdaq”), 
       col=c(“blue”“green”), lty=1,lwd=3, box.lty=0)
 
 
#———————————————————–
# graph function
#———————————————————–
f_draw_one < function(x, y, title) {
    
    matplot(x, y, main = title, type = “l”
            lwd = 3, col = “blue”, xlab=“Date”, ylab=“Index”)
    legend(‘topleft’,legend=title, col=“blue”,
           lty=1,lwd=3, box.lty=0)
}
 
f_draw_two < function(x1, y1, title1, x2, y2, title2) {
 
    par(mfrow=c(1,2), mar = c(6432)) # bltr
    matplot(x1, y1, main = title1, type = “l”
            lwd = 3, col = “blue” , xlab=“Date”, ylab=“Index”)
    matplot(x2, y2, main = title2 , type = “l”
            lwd = 3, col = “green”, xlab=“Date”, ylab=“Index”)
    legend(‘topleft’,legend=c(title1, title2), 
           col=c(“blue”“green”), lty=1,lwd=3, box.lty=0)
}
 
# draw figure 1 and 2 using functions
x11(width=16/2, height=5)
f_draw_one(df$date, df$GSPC, “S&P 500”)
 
x11(width=16/2, height=5)
f_draw_two(df$date, df$GSPC, “S&P 500”
           df$date, df$GSPC, “Nasdaq”)
        
 
#———————————————————–
# paste images to a WORD file with additional information
#———————————————————–
 
### create a new document object
doc < read_docx()
 
### add title and description
doc < body_add(doc, “Fig. 1”, style = “Normal”)
desc < “This figure plots a time series … blah blah”
doc < body_add(doc, desc, style = “Normal”)
 
 
### various method to add figure into WORD
 
# 1) by direct commands
doc < body_add(doc, plot_instr(code = {
    matplot(df$date, df$GSPC, main = “S&P 500”, type = “l”,
            lwd = 3, col = “blue”, xlab=“Date”, ylab=“Index”)
    legend(‘topleft’,legend=“S&P 500”, col=“blue”,
           lty=1,lwd=3, box.lty=0)
}), height = 4)
 
# 2) by encapsulated function
doc < body_add(doc, plot_instr(code = {
    f_draw_two(df$date, df$GSPC, “S&P 500”
               df$date, df$GSPC, “Nasdaq”)
}), width = 8, height = 4)
 
### add table if necessary
doc < body_add(doc, “”, style = “Normal”)
doc < body_add(doc, head(as.data.frame(GSPC)), 
                style = “table_template”)
 
### save word file
print(doc, target=“r_to_word_test.docx”)
 
cs


The output Word file (r_to_word_test.docx) is the first figure in this post, which is located at a working directory(in our case, D:/). With the help of the manual for the officer R package, you can use more useful functionalities than this post.


To leave a comment for the author, please follow the link and comment on their blog: SH Fintech Modeling.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)