Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
- This code builds off the file built here: https://medium.com/@FrenchTrevor/reading-files-into-and-out-of-r-a5bc6fded44b
- Full code can be found at the bottom of the page.
- Video here: https://youtu.be/qK9hM9oEocM
Add a Column to a Dataframe
This snippet demonstrates how to add a column to a dataframe in R. Specifically, this code creates a new dataframe called “df” from an existing dataframe called “rawExcel” and adds a column called “Pay Raise” which is equal to the value of “Base Salary” * .05.
#Add a pay raise column equal to 5% of base Salary df <- rawExcel %>% mutate(rawExcel, "Pay Raise" = rawExcel$`Base Salary` * .05) View(df)
Order Data by a Specified Column’s Value
This snippet demonstrates how to order any given column by ascending or descending values.
#Order data by a specified column's value ascPay <- arrange(df, `Pay Raise`) View(ascPay) descPay <- arrange(df, desc(`Pay Raise`)) View(descPay)
Add a New Row to a Dataframe
Adding a new row to a dataframe in R requires you to do two things. First, you’ll have to create a variable which contains the data for the new row. In this snippet, we’ve called that variable “new_row”. Second, you’ll need to bind that new row to your desired dataframe. We’ve bound our new_row variable to our “df” dataframe and called the resulting dataframe “addRow”.
#Add a new row new_row <- c(11, 3600, 1800) addRow <- rbind(df, new_row) View(addRow)
Order Data by Multiple Columns
After adding the new row, we are left with two observations with the same “Pay Raise” data. Because of this, we’ll want to sort on a secondary variable. This snippet still sorts the data on the “Pay Raise” column, but it also tells the program to sort on “Employee #” given the “Pay Raise” numbers are the same.
#Order data by multiple columns ascPay <- arrange(addRow, `Pay Raise`, `Employee #`) View(ascPay) descPay <- arrange(addRow, desc(`Pay Raise`), `Employee #`) View(descPay)
Exclude Columns from Your Data
This snippet creates a new dataframe which only includes the “Employee #” and the “Pay Raise” columns, omitting the “Base Salary” column.
#Exclude columns from your data lessColumn <- subset(df, select = c("Employee #", "Pay Raise")) View(lessColumn)
Filter Observations by Value
This snippet creates a variable called “midLine” which establishes the median pay of the organization. We then use that variable to create a dataframe which only includes the top half of earners along with a dataframe which only contains the bottom half of earners.
#Filter observations by value midLine <- median(df$`Base Salary`) topEarners <- subset(df, `Base Salary` > midLine) View(topEarners) bottomEarners <- subset(df, `Base Salary` < midLine) View(bottomEarners)
Add a New Column with Values Which Are Dependent on the Values of Another Column
This snippet creates a column called “Top Earners?” and it’s value will be set to “1” if “Base Salary” is above the median or “0” otherwise.
#Add a new column with values dependent on the values of another column dependentColumn <- df %>% mutate("Top Earner?" = if_else(df$`Base Salary` > midLine, 1, 0)) View(dependentColumn)
Full Code
#Clears environment rm(list = ls(all.names = TRUE)) #------------------------------------------------------------------------------- #-----------------------------------LIBRARIES----------------------------------- #------------------------------------------------------------------------------- library(readxl) library(dplyr) library(writexl) #------------------------------------------------------------------------------- #---------------------------------DATA SOURCES---------------------------------- #------------------------------------------------------------------------------- #Set your working directory wd <- "C:/Users/Frenc/OneDrive/Desktop/" #Set path to an Excel file excelFile <- paste(wd, "input.xlsx", sep='') #Set path to a CSV file csvFile <- paste(wd, "input.csv", sep='') #Read Excel file into R and view it rawExcel <- read_excel(excelFile) View(rawExcel) #Read CSV file into R and view it rawCSV <- read.csv(csvFile) View(rawCSV) #------------------------------------------------------------------------------- #------------------------------DATA MANIPULATION-------------------------------- #------------------------------------------------------------------------------- #Add a pay raise column equal to 5% of base Salary df <- rawExcel %>% mutate(rawExcel, "Pay Raise" = rawExcel$`Base Salary` * .05) View(df) #Order data by a specified column's value ascPay <- arrange(df, `Pay Raise`) View(ascPay) descPay <- arrange(df, desc(`Pay Raise`)) View(descPay) #Add a new row new_row <- c(11, 36000, 1800) addRow <- rbind(df, new_row) View(addRow) #Order data by multiple columns ascPay <- arrange(addRow, `Pay Raise`, `Employee #`) View(ascPay) descPay <- arrange(addRow, desc(`Pay Raise`), `Employee #`) View(descPay) #Exclude columns from your data lessColumn <- subset(df, select = c("Employee #", "Pay Raise")) View(lessColumn) #Filter observations by value midLine <- median(df$`Base Salary`) topEarners <- subset(df, `Base Salary` > midLine) View(topEarners) bottomEarners <- subset(df, `Base Salary` < midLine) View(bottomEarners) #Add a new column with values dependent on the values of another column dependentColumn <- df %>% mutate("Top Earner?" = if_else(df$`Base Salary` > midLine, 1, 0)) View(dependentColumn) #------------------------------------------------------------------------------- #-------------------------------OUTPUT NEW FILE--------------------------------- #------------------------------------------------------------------------------- #Set path to write Excel file excelOut <- paste(wd, "output.xlsx", sep = '') #Set path to write CSV file csvOut <- paste(wd, "output.csv", sep = '') #Write Excel file write_xlsx(df, excelOut) #Write CSV file write.csv(df, csvOut, row.names = T)
Manipulating Data with R was originally published in Trevor French on Medium, where people are continuing the conversation by highlighting and responding to this story.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.