Site icon R-bloggers

A proposal for capping exploding electricity spot market prices without subsidies or supply reduction

[This article was first published on Economics and R - R posts, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

At the EEX, German baseload electricity futures for the year 2023 trade at a price of 950 Euro / MWh and peak load futures at 1275 Euro / MWh. Future prices for France are even higher. (Prices were looked up on 2022-08-28).

In contrast, average German spot market prices 2015 to 2021 were below 50 Euro / MWh. That market participants seem to expect twenty-fold higher prices in 2023 than the average of those previous years seems really scary. (I deeply hope that at least a lot of firms have hedged their long term electricity demand when future prices were still low).

The current electricity markets operate in their core like other free markets where prices are determined by the intersection between supply and demand. (Electricity spot and future markets are also augmented by markets for balancing energy, some mechanism for redispatch to deal with network constraints, and in some countries capacity mechanisms). And in normal times, this market design seems in many dimensions superior to alternatives. Yet, given the current unforeseen, massive shock, some modifications could turn out helpful to dampen the impact. I know that it seems incredibly hard to implement sensible reforms within a short time frame, but still wanted to write up a proposal.

Proposal

Here is the sketched proposal, later I show some numbers:

A simple numerical example

For simplicity, we assume the spot market trading is for periods of one hour and hourly demand is in the MWh range instead of the more realistic GWh range.

In the existing market design, the marginal OCGT gas power plant would determine the equilibrium price of 1000 Euro / MWh, causing total expenditures of 50*1000 = 50000 Euro for the buyers.

With my proposal all gas power plants also receive the marginal price of 1000 Euro / MWh, but the other power plants only receive the price cap of 300 Euro / MWh. Buyers have to pay in total

30 * 300 + 20 * 1000 = 29000 Euro

which corresponds to a price of 29000 / 50 = 580 Euro / MWh.

This means in this example the price cap reduces buyer expenditures by 42% compared to the current marginal cost pricing system. The money comes from a reduction of the infra-marginal rents of non-gas power plants.

Discussion

Let us discuss the key elements and critical issues of this proposal:

Some numbers

For a better quantitative intuition, I performed some very crude computations in R yielding the following plot:


The colored bars correspond to different power plant types in Germany. The y-axis shows my crude estimate of their average variable costs in the considered time period. The x-axis shows the plant types average share of electricity production in the considered period. The black line shows the average German spot market electricity price in that period. The left panel shows the averages for the years 2015-2020 and the right panel shows the data for the first 20 days in August 2022 where average electricity prices (black lines) have already exceeded 400 Euro / MWh.

The area of the colored bars show the average variable production cost for 1 MWh electricity in the period and the area under the black line shows the price that is on average paid for it on the spot market.

While both costs and prices are massively higher in August 2022, prices have in absolute terms (also in relative terms) increased much more than average variable costs. The graph also illustrates the now huge infra-marginal rents that non-gas plants can on average achieve by selling on the spot market. The idea of my proposal is to reduce these rents by imposing the price cap for non-gas power plants. Note that already on the left hand side the much smaller rents were probably sufficient to cover fixed costs on average. Thus, there should be enough scope at the current or even higher future prices to implement such a price cap while still maintaining high investment incentives for renewables (and incentives to keep coal plants alive as long as needed).

Looking at the future prices of roughly 1000 Euro / MWh for 2023, the differences between electricity prices and average variable costs seem even much higher than for our Aug. 2022 data. The increase in future electricity prices seems to go beyond the expected increase in variable costs of CCGT plants (see e.g. here). That might be explained by expectations that next year OCGT plants will be more often price setting, yielding a higher gap between prices and average variable costs. Coal future prices for 2023 seem somewhat lower than currently in 2022 (see here).

Disclaimer concerning the plot above:

Note that the variable cost estimates are partially based on quite crude assumptions. For gas (CCGT and OCGT), coal and oil, I had time series of fuel prices available (more detail in my previous post). But for nuclear, lignite, biomass, and “other”, I relatively arbitrarily assumed that the ratio of their fuel costs relative to the oil price stays constant over time and I used the ratios implied by the power plant data used in the DIW Dieter model.

Furthermore, available production data does not distinguish between production from CCGT and OCGT gas power plants. I also did not know how much of the roughly 30 GW German gas power capacity are the more efficient CCGT (combined cycle gas turbine) power plants and how much the cheaper to build OCGT (open cycle gas turbine). I just assumed that 25% of that capacity, i.e. 7.5 GW are CCGT and that the first 7.5 GW gas production always comes from CCGT before OCGT start to produce.

So while the details may be wrong, I think the main insight from the plot is relatively robust.

Author: Sebastian Kranz, Ulm University

To leave a comment for the author, please follow the link and comment on their blog: Economics and R - R posts.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.