Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
A few years ago in 2018, I discussed Boosted Configuration (neural) Networks (BCN for multivariate time series forecasting) in this document. Unlike Stochastic Configuration Networks from which they are inspired, BCNs aren’t randomized. Rather, they are closer to Gradient Boosting Machines and Matching Pursuit algorithms; with base learners being single-layered feedforward neural networks – that are actually optimized at each iteration of the algorithm.
The mathematician that you are has certainly been
asking himself questions about the convexity of the problem at line 4, algorithm 1 (in
the document). As of July 2022, there are unfortunately no answers to that question. BCNs works well empirically, as we’ll see, and finding the maximum at line 4 of the algorithm is achieved, by default, with R’s stats::nlminb
. Other derivative-free optimizers are available in R package bcn
.
As it will be shown in this document, BCNs can be used for classification. For this purpose, and as implemented in R package bcn
, the response (variable to be explained) containing the classes is one-hot encoded as a matrix of probabilities equal to 0 or 1. Then, the classification technique dealing with a one-hot encoded response matrix is similar to the one presented in this post.
6 toy datasets are used for this basic demo of R package bcn
: Iris, Wine, Ionosphere, Wisconsin Breast, Digits, Penguins.
For each dataset, hyperparameter tuning has already been done. Repeated 5-fold cross-validation was carried out on 80% of the data, for each dataset, and the accuracy reported in the table below is calculated on the remaining 20% of the data. BCN results are compared to Random Forest’s (with default parameters), in order to verify that BCN results are not absurd – it’s not a competition between Random Forest and BCN here.
In the examples, you’ll also notice that BCN’s adjustment to a dataset can be relatively slow when the number of explanatory variables is high (>30, see the digits
dataset example, initially with 64 covariates). This is because of line 4, algorithm 1, too: an optimization problem in a high dimensional space is repeated at each iteration of the algorithm.
The future for R package bcn
(in no particular order)?
- Implement BCN for regression (a continuous response)
- Improve the speed of execution for high dimensional problems
- Implement a Python version
Dataset | BCN test set Accuracy | Random Forest test set accuracy |
---|---|---|
iris | 100% | 93.33% |
Wine | 97.22% | 94.44% |
Ionosphere | 90.14% | 95.77% |
Breast cancer | 99.12% | 94.73% |
Digits | 97.5% | 98.61% |
Penguins | 100% | 100% |
Content
- 0 – Installing/Loading Packages
- 1 – iris dataset
- 2 – wine dataset
- 3 – Ionosphere dataset
- 4 – Breast Cancer dataset
- 5 – digits dataset
- 6 – Palmer Penguins dataset
0 – Installing and loading packages
Installing bcn
From Github:
devtools::install_github("Techtonique/bcn") # Browse the bcn manual pages help(package = 'bcn')
Installing bcn
from R universe:
# Enable repository from techtonique options(repos = c( techtonique = 'https://techtonique.r-universe.dev', CRAN = 'https://cloud.r-project.org')) # Download and install bcn in R install.packages('bcn') # Browse the bcn manual pages help(package = 'bcn')
Loading packages:
library(bcn) # Boosted Configuration networks (only for classification, for now) library(mlbench) # Machine Learning Benchmark Problems library(caret) library(randomForest) library(pROC)
1 – iris dataset
data("iris") head(iris) dim(iris) set.seed(1234) train_idx <- sample(nrow(iris), 0.8 * nrow(iris)) X_train <- as.matrix(iris[train_idx, -ncol(iris)]) X_test <- as.matrix(iris[-train_idx, -ncol(iris)]) y_train <- iris$Species[train_idx] y_test <- iris$Species[-train_idx] ptm <- proc.time() fit_obj <- bcn::bcn(x = X_train, y = y_train, B = 10L, nu = 0.335855, lam = 10**0.7837525, r = 1 - 10**(-5.470031), tol = 10**-7, activation = "tanh", type_optim = "nlminb", show_progress = FALSE) cat("Elapsed: ", (proc.time() - ptm)[3]) plot(fit_obj$errors_norm, type='l') preds <- predict(fit_obj, newx = X_test) mean(preds == y_test) table(y_test, preds) rf <- randomForest::randomForest(x = X_train, y = y_train) mean(predict(rf, newdata=as.matrix(X_test)) == y_test) print(head(predict(fit_obj, newx = X_test, type='probs'))) print(head(predict(rf, newdata=as.matrix(X_test), type='prob')))
2- wine dataset
data(wine) head(wine) dim(wine) set.seed(1234) train_idx <- sample(nrow(wine), 0.8 * nrow(wine)) X_train <- as.matrix(wine[train_idx, -ncol(wine)]) X_test <- as.matrix(wine[-train_idx, -ncol(wine)]) y_train <- as.factor(wine$target[train_idx]) y_test <- as.factor(wine$target[-train_idx]) ptm <- proc.time() fit_obj <- bcn::bcn(x = X_train, y = y_train, B = 6L, nu = 0.8715725, lam = 10**0.2143678, r = 1 - 10**(-6.1072786), tol = 10**-4.9605713, show_progress = FALSE) cat("Elapsed: ", (proc.time() - ptm)[3]) plot(fit_obj$errors_norm, type='l') preds <- predict(fit_obj, newx = X_test) mean(preds == y_test) table(y_test, preds) rf <- randomForest::randomForest(x = X_train, y = y_train) mean(predict(rf, newdata=as.matrix(X_test)) == y_test) print(head(predict(fit_obj, newx = X_test, type='probs'))) print(head(predict(rf, newdata=as.matrix(X_test), type='prob')))
3 – Ionosphere dataset
data("Ionosphere") head(Ionosphere) dim(Ionosphere) Ionosphere$V1 <- as.numeric(Ionosphere$V1) Ionosphere$V2 <- NULL set.seed(1234) train_idx <- sample(nrow(Ionosphere), 0.8 * nrow(Ionosphere)) X_train <- as.matrix(Ionosphere[train_idx, -ncol(Ionosphere)]) X_test <- as.matrix(Ionosphere[-train_idx, -ncol(Ionosphere)]) y_train <- as.factor(Ionosphere$Class[train_idx]) y_test <- as.factor(Ionosphere$Class[-train_idx]) ptm <- proc.time() fit_obj <- bcn::bcn(x = X_train, y = y_train, B = 50L, nu = 0.5182606, lam = 10**1.323274, r = 1 - 10**(-6.694688), col_sample = 0.7956659, tol = 10**-7, verbose=FALSE, show_progress = FALSE) cat("Elapsed: ", (proc.time() - ptm)[3]) plot(fit_obj$errors_norm, type='l') preds <- predict(fit_obj, newx = X_test) mean(preds == y_test) table(y_test, preds) rf <- randomForest::randomForest(x = X_train, y = y_train) mean(predict(rf, newdata=as.matrix(X_test)) == y_test) print(head(predict(fit_obj, newx = X_test, type='probs'))) print(head(predict(rf, newdata=as.matrix(X_test), type='prob'))) roc_obj <- pROC::roc(as.numeric(y_test), as.numeric(preds)) pROC::auc(roc_obj) roc_obj_rf <- pROC::roc(as.numeric(y_test), as.numeric(predict(rf, newdata=as.matrix(X_test)))) pROC::auc(roc_obj_rf)
4 – breast cancer dataset
data("breast_cancer") head(breast_cancer) dim(breast_cancer) set.seed(1234) train_idx <- sample(nrow(breast_cancer), 0.8 * nrow(breast_cancer)) X_train <- as.matrix(breast_cancer[train_idx, -ncol(breast_cancer)]) X_test <- as.matrix(breast_cancer[-train_idx, -ncol(breast_cancer)]) y_train <- as.factor(breast_cancer$target[train_idx]) y_test <- as.factor(breast_cancer$target[-train_idx]) ptm <- proc.time() fit_obj <- bcn::bcn(x = X_train, y = y_train, B = 31L, nu = 0.4412851, lam = 10**-0.2439358, r = 1 - 10**(-7), col_sample = 0.5, tol = 10**-2, show_progress = FALSE) cat("Elapsed: ", (proc.time() - ptm)[3]) plot(fit_obj$errors_norm, type='l') preds <- predict(fit_obj, newx = X_test) mean(preds == y_test) table(y_test, preds) rf <- randomForest::randomForest(x = X_train, y = y_train) mean(predict(rf, newdata=as.matrix(X_test)) == y_test) print(head(predict(fit_obj, newx = X_test, type='probs'))) print(head(predict(rf, newdata=as.matrix(X_test), type='prob'))) roc_obj <- pROC::roc(as.numeric(y_test), as.numeric(preds)) pROC::auc(roc_obj) roc_obj_rf <- pROC::roc(as.numeric(y_test), as.numeric(predict(rf, newdata=as.matrix(X_test)))) pROC::auc(roc_obj_rf)
5 – digits dataset
data("digits") head(digits) dim(digits) set.seed(1234) train_idx <- sample(nrow(digits), 0.8 * nrow(digits)) X_train <- as.matrix(digits[train_idx, -ncol(digits)]) X_test <- as.matrix(digits[-train_idx, -ncol(digits)]) y_train <- as.factor(digits$target[train_idx]) X_train <- X_train[, -caret::nearZeroVar(X_train)] y_test <- as.factor(digits$target[-train_idx]) X_test <- X_test[, colnames(X_train)] ptm <- proc.time() fit_obj <- bcn::bcn(x = X_train, y = y_train, B = 50L, nu = 0.6549268, lam = 10**0.4635435, r = 1 - 10**(-7), col_sample = 0.8928518, tol = 10**-5.483609, verbose=FALSE, show_progress = FALSE) cat("Elapsed: ", (proc.time() - ptm)[3]) plot(fit_obj$errors_norm, type='l') preds <- predict(fit_obj, newx = X_test) mean(preds == y_test) table(y_test, preds) rf <- randomForest::randomForest(x = X_train, y = y_train) mean(predict(rf, newdata=as.matrix(X_test)) == y_test) print(head(predict(fit_obj, newx = X_test, type='probs'))) print(head(predict(rf, newdata=as.matrix(X_test), type='prob')))
6 – Penguins dataset
data("penguins") penguins_ <- as.data.frame(penguins) replacement <- median(palmerpenguins::penguins$bill_length_mm, na.rm = TRUE) penguins_$bill_length_mm[is.na(palmerpenguins::penguins$bill_length_mm)] <- replacement replacement <- median(palmerpenguins::penguins$bill_depth_mm, na.rm = TRUE) penguins_$bill_depth_mm[is.na(palmerpenguins::penguins$bill_depth_mm)] <- replacement replacement <- median(palmerpenguins::penguins$flipper_length_mm, na.rm = TRUE) penguins_$flipper_length_mm[is.na(palmerpenguins::penguins$flipper_length_mm)] <- replacement replacement <- median(palmerpenguins::penguins$body_mass_g, na.rm = TRUE) penguins_$body_mass_g[is.na(palmerpenguins::penguins$body_mass_g)] <- replacement # replacing NA's by the most frequent occurence penguins_$sex[is.na(palmerpenguins::penguins$sex)] <- "male" # most frequent print(summary(penguins_)) print(sum(is.na(penguins_))) # one-hot encoding for covariates penguins_mat <- model.matrix(species ~., data=penguins_)[,-1] penguins_mat <- cbind(penguins_$species, penguins_mat) penguins_mat <- as.data.frame(penguins_mat) colnames(penguins_mat)[1] <- "species" print(head(penguins_mat)) print(tail(penguins_mat)) y <- as.integer(penguins_mat$species) X <- as.matrix(penguins_mat[,2:ncol(penguins_mat)]) n <- nrow(X) p <- ncol(X) set.seed(1234) index_train <- sample(1:n, size=floor(0.8*n)) X_train <- X[index_train, ] y_train <- factor(y[index_train]) X_test <- X[-index_train, ] y_test <- factor(y[-index_train]) ptm <- proc.time() fit_obj <- bcn::bcn(x = X_train, y = y_train, B = 23, nu = 0.470043, lam = 10**-0.05766029, r = 1 - 10**(-7.905866), tol = 10**-7, show_progress = FALSE) cat("Elapsed: ", (proc.time() - ptm)[3]) plot(fit_obj$errors_norm, type='l') preds <- predict(fit_obj, newx = X_test) mean(preds == y_test) table(y_test, preds) rf <- randomForest::randomForest(x = X_train, y = y_train) mean(predict(rf, newdata=as.matrix(X_test)) == y_test) print(head(predict(fit_obj, newx = X_test, type='probs'))) print(head(predict(rf, newdata=as.matrix(X_test), type='prob')))
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.