Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Introduction
In this post, the Technology Adoption data set is used to illustrate data exploration R and adding information using the {countrycode} package. During data exploration, the tt$technology
data set is filtered to select for the “Energy” category, and the distinct values for “variable” and “label” are printed. A subset is then created to test adding full country names and corresponding continents based on 3 letter ISO codes in the data set using the countrycode()
function. The full data set is then wrangled into two tibbles for fossil fuel and low-carbon electricity production: the distribution for each energy source is plotted according to the corresponding continent. The full source for this blog post is available on GitHub.
Setup
Loading the R libraries and data set.
# Loading libraries library(tidytuesdayR) library(countrycode) library(tidyverse) library(ggthemes) # Loading data tt <- tt_load("2022-07-19") Downloading file 1 of 1: `technology.csv`
Exploring tt$technology: selecting distinct values after filtering, and testing adding a “continent” variable
# Printing a summary of tt$technology tt$technology # A tibble: 491,636 × 7 variable label iso3c year group categ…¹ value <chr> <chr> <chr> <dbl> <chr> <chr> <dbl> 1 BCG % children who received a… AFG 1982 Cons… Vaccin… 10 2 BCG % children who received a… AFG 1983 Cons… Vaccin… 10 3 BCG % children who received a… AFG 1984 Cons… Vaccin… 11 4 BCG % children who received a… AFG 1985 Cons… Vaccin… 17 5 BCG % children who received a… AFG 1986 Cons… Vaccin… 18 6 BCG % children who received a… AFG 1987 Cons… Vaccin… 27 7 BCG % children who received a… AFG 1988 Cons… Vaccin… 40 8 BCG % children who received a… AFG 1989 Cons… Vaccin… 38 9 BCG % children who received a… AFG 1990 Cons… Vaccin… 30 10 BCG % children who received a… AFG 1991 Cons… Vaccin… 21 # … with 491,626 more rows, and abbreviated variable name ¹category # ℹ Use `print(n = ...)` to see more rows # Printing the distinct "variable" and "label" pairs for the "Energy" category ## This will be used as a reference to create the "energy_type" column/variable tt$technology %>% filter(category == "Energy") %>% select(variable, label) %>% distinct() # A tibble: 11 × 2 variable label <chr> <chr> 1 elec_coal Electricity from coal (TWH) 2 elec_cons Electric power consumption (KWH) 3 elec_gas Electricity from gas (TWH) 4 elec_hydro Electricity from hydro (TWH) 5 elec_nuc Electricity from nuclear (TWH) 6 elec_oil Electricity from oil (TWH) 7 elec_renew_other Electricity from other renewables (TWH) 8 elec_solar Electricity from solar (TWH) 9 elec_wind Electricity from wind (TWH) 10 elecprod Gross output of electric energy (TWH) 11 electric_gen_capacity Electricity Generating Capacity, 1000 kilowa… # Setting a seed to make results reproducible set.seed("20220719") # Using sample() to select six rows of tt$technology at random sample_rows <- sample(x = rownames(tt$technology), size = 6) # Creating a subset using the random rows technology_sample <- tt$technology[sample_rows, ] # Printing a summary of the randomly sampled subset technology_sample # A tibble: 6 × 7 variable label iso3c year group categ…¹ value <chr> <chr> <chr> <dbl> <chr> <chr> <dbl> 1 Pol3 % children who rec… PRY 1993 Cons… Vaccin… 6.6 e1 2 pct_ag_ara_land % Arable land shar… LBR 1991 Non-… Agricu… 3.08e1 3 fert_total Aggregate kg of fe… CHE 1988 Prod… Agricu… 1.78e8 4 railp Thousands of passe… TUR 1948 Cons… Transp… 4.9 e1 5 ag_land Land agricultural … TUN 2013 Non-… Agricu… 9.94e3 6 tv Television sets NIC 1981 Cons… Commun… 1.14e5 # … with abbreviated variable name ¹category # Adding continent and country name columns/variables to the sample subset, # using the countrycode::countrycode() function technology_sample <- technology_sample %>% mutate(continent = countrycode(iso3c, origin = "iso3c", destination = "continent"), country = countrycode(iso3c, origin = "iso3c", destination = "country.name")) # Selecting the country ISO code, continent and country name of the sample # subset, to confirm that countrycode() worked as intended technology_sample %>% select(iso3c, continent, country) # A tibble: 6 × 3 iso3c continent country <chr> <chr> <chr> 1 PRY Americas Paraguay 2 LBR Africa Liberia 3 CHE Europe Switzerland 4 TUR Asia Turkey 5 TUN Africa Tunisia 6 NIC Americas Nicaragua
Wrangling tt$technology into two electricity production tibbles: fossil fuels and low-carbon sources
# Adding the corresponding continent for each country in tt$technology; # filtering to select for the "Energy" category; adding a more succinct # "energy_type" variable; and dropping rows with missing values energy_tbl <- tt$technology %>% mutate(continent = countrycode(iso3c, origin = "iso3c", destination = "continent")) %>% filter(category == "Energy") %>% mutate(energy_type = fct_recode(variable, "Consumption" = "elec_cons", "Coal" = "elec_coal", "Gas" = "elec_gas", "Hydro" = "elec_hydro", "Nuclear" = "elec_nuc", "Oil" = "elec_oil", "Other renewables" = "elec_renew_other", "Solar" = "elec_solar", "Wind" = "elec_wind", "Output" = "elecprod", "Capacity" = "electric_gen_capacity")) %>% drop_na() # Printing a summary of energy_tbl energy_tbl # A tibble: 66,300 × 9 variable label iso3c year group categ…¹ value conti…² energ…³ <chr> <chr> <chr> <dbl> <chr> <chr> <dbl> <chr> <fct> 1 elec_coal Electric… ABW 2000 Prod… Energy 0 Americ… Coal 2 elec_coal Electric… ABW 2001 Prod… Energy 0 Americ… Coal 3 elec_coal Electric… ABW 2002 Prod… Energy 0 Americ… Coal 4 elec_coal Electric… ABW 2003 Prod… Energy 0 Americ… Coal 5 elec_coal Electric… ABW 2004 Prod… Energy 0 Americ… Coal 6 elec_coal Electric… ABW 2005 Prod… Energy 0 Americ… Coal 7 elec_coal Electric… ABW 2006 Prod… Energy 0 Americ… Coal 8 elec_coal Electric… ABW 2007 Prod… Energy 0 Americ… Coal 9 elec_coal Electric… ABW 2008 Prod… Energy 0 Americ… Coal 10 elec_coal Electric… ABW 2009 Prod… Energy 0 Americ… Coal # … with 66,290 more rows, and abbreviated variable names ¹category, # ²continent, ³energy_type # ℹ Use `print(n = ...)` to see more rows # Filtering energy_table for fossil fuel rows fossil_fuel_tbl <- energy_tbl %>% filter(energy_type != "Consumption" & energy_type != "Output" & energy_type != "Capacity") %>% filter(energy_type == "Coal" | energy_type == "Gas" | energy_type == "Oil") # Printing a summary of the tibble fossil_fuel_tbl # A tibble: 13,914 × 9 variable label iso3c year group categ…¹ value conti…² energ…³ <chr> <chr> <chr> <dbl> <chr> <chr> <dbl> <chr> <fct> 1 elec_coal Electric… ABW 2000 Prod… Energy 0 Americ… Coal 2 elec_coal Electric… ABW 2001 Prod… Energy 0 Americ… Coal 3 elec_coal Electric… ABW 2002 Prod… Energy 0 Americ… Coal 4 elec_coal Electric… ABW 2003 Prod… Energy 0 Americ… Coal 5 elec_coal Electric… ABW 2004 Prod… Energy 0 Americ… Coal 6 elec_coal Electric… ABW 2005 Prod… Energy 0 Americ… Coal 7 elec_coal Electric… ABW 2006 Prod… Energy 0 Americ… Coal 8 elec_coal Electric… ABW 2007 Prod… Energy 0 Americ… Coal 9 elec_coal Electric… ABW 2008 Prod… Energy 0 Americ… Coal 10 elec_coal Electric… ABW 2009 Prod… Energy 0 Americ… Coal # … with 13,904 more rows, and abbreviated variable names ¹category, # ²continent, ³energy_type # ℹ Use `print(n = ...)` to see more rows # Filtering energy_table for low-carbon energy source rows low_carbon_tbl <- energy_tbl %>% filter(energy_type != "Consumption" & energy_type != "Output" & energy_type != "Capacity") %>% filter(energy_type != "Coal" & energy_type != "Gas" & energy_type != "Oil") # Printing a summary of the tibble low_carbon_tbl # A tibble: 26,890 × 9 variable label iso3c year group categ…¹ value conti…² energ…³ <chr> <chr> <chr> <dbl> <chr> <chr> <dbl> <chr> <fct> 1 elec_hydro Electri… ABW 2000 Prod… Energy 0 Americ… Hydro 2 elec_hydro Electri… ABW 2001 Prod… Energy 0 Americ… Hydro 3 elec_hydro Electri… ABW 2002 Prod… Energy 0 Americ… Hydro 4 elec_hydro Electri… ABW 2003 Prod… Energy 0 Americ… Hydro 5 elec_hydro Electri… ABW 2004 Prod… Energy 0 Americ… Hydro 6 elec_hydro Electri… ABW 2005 Prod… Energy 0 Americ… Hydro 7 elec_hydro Electri… ABW 2006 Prod… Energy 0 Americ… Hydro 8 elec_hydro Electri… ABW 2007 Prod… Energy 0 Americ… Hydro 9 elec_hydro Electri… ABW 2008 Prod… Energy 0 Americ… Hydro 10 elec_hydro Electri… ABW 2009 Prod… Energy 0 Americ… Hydro # … with 26,880 more rows, and abbreviated variable names ¹category, # ²continent, ³energy_type # ℹ Use `print(n = ...)` to see more rows
Plotting distributions of electricity produced from fossil fuels and low-carbon sources
# Plotting distributions of electricity produced from fossil fuels fossil_fuel_tbl %>% ggplot(aes(x = fct_reorder(energy_type, value), y = value, fill = energy_type)) + geom_boxplot() + theme_solarized() + theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position = "none") + scale_colour_discrete() + scale_y_log10() + facet_wrap(~continent, scales = "free") + labs( title = "Electricity generated from fossil fuels by continent", y = "Output in log terawatt-hours: log10(TWh)", x = "Source")
# Plotting distributions of electricity produced from low-carbon sources low_carbon_tbl %>% ggplot(aes(x = fct_reorder(energy_type, value), y = value, fill = energy_type)) + geom_boxplot() + theme_solarized() + theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position = "none") + scale_colour_discrete() + scale_y_log10() + facet_wrap(~continent, scales = "free") + labs( title = "Electricity generated from low-carbon sources by continent", y = "Output in log terawatt-hours: log10(TWh)", x = "Source")
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.