On a Möbius transformation
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Consider a complex number \(\gamma\) such that \(|\gamma| < 1\) and the following matrix: \[ M = \begin{pmatrix} i & \gamma \\ \bar\gamma & -i \end{pmatrix}. \]
Then the Möbius transformation associated to this matrix is nice. Why? Because:
it maps the unit disk to itself;
-
it is of order \(2\);
its fractional powers have a closed form.
For these reasons, I often use this Möbius transformation in my shaders.
Let us derive the fractional powers of \(M\). We set \(h = \sqrt{1-|\gamma|^2}\).
The eigenvalues of \(M\) are \[ \begin{align} \lambda_1 & = -ih \\ \lambda_2 & = ih = \bar{\lambda_1} \end{align} \] with corresponding eigen vectors \[ \begin{align} v_1 & = \begin{pmatrix} (1-h)\dfrac{i\gamma}{|\gamma|^2} \\ 1 \end{pmatrix} \\ v_2 & = \begin{pmatrix} (1+h)\dfrac{i\gamma}{|\gamma|^2} \\ 1 \end{pmatrix}. \end{align} \] Let \(P = \begin{pmatrix} v_1 & v_2 \end{pmatrix}\). Then \[ \frac{1}{\det(P)} = \frac{i\bar\gamma}{2h} \] and for any complex numbers \(d_1\) and \(d_2\), \[ P \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} P^{-1} = \frac{1}{2h} \begin{pmatrix} d_2(1+h)-d_1(1-h) & i(d_1-d_2)\gamma \\ i(d_1-d_2)\bar\gamma & d_1(1+h)-d_2(1-h) \end{pmatrix}. \]
In particular, \(M^t\) is given by \[ \begin{pmatrix} a & b \\ \bar b & \bar a \end{pmatrix} \] where \[ \begin{align} a & = \Re(d_1) – i \dfrac{\Im(d_1)}{h}, \\ b & = \gamma \dfrac{\Im(d_2)}{h}, \\ d_1 & = \bar{d_2}, \\ d_2 & = h^t \exp\left(i\dfrac{t\pi}{2}\right). \end{align} \]
M_power_t <- function(gamma, t){ h <- sqrt(1-Mod(gamma)^2) d2 <- h^t * (cos(t*pi/2) + 1i*sin(t*pi/2)) d1 <- Conj(d2) a <- Re(d1) - 1i*Im(d1)/h b <- gamma * Im(d2)/h c <- Conj(b) d <- Conj(a) c(a = a, b = b, c = c, d = d) }
Let’s apply this Möbius transformation now. Here is a visualization of the Dedekind eta function, a complex function availale in the jacobi package:
# background color bkgcol <- rgb(21, 25, 30, maxColorValue = 255) modulo <- function(a, p) { a - p * ifelse(a > 0, floor(a/p), ceiling(a/p)) } colormap <- function(z){ if(is.na(z)){ return(bkgcol) } if(is.infinite(z) || is.nan(z)){ return("#000000") } x <- Re(z) y <- Im(z) r <- modulo(Mod(z), 1) g <- 2 * abs(modulo(atan2(y, x), 0.5)) b <- abs(modulo(x*y, 1)) if(is.nan(b)){ return("#000000") } rgb( 8 * (1 - cos(r-0.5)), 8 * (1 - cos(g-0.5)), 8 * (1 - cos(b-0.5)), maxColorValue = 1 ) } library(jacobi) f <- Vectorize(function(x, y){ q <- x + 1i*y if(Mod(q) > 0.9999 || (Im(q) == 0 && Re(q) <= 0)){ return(bkgcol) } tau <- -1i * log(q) / pi z <- eta(tau) colormap(z) }) x <- y <- seq(-1, 1, len = 2000) image <- outer(x, y, f) opar <- par(mar = c(0,0,0,0), bg = bkgcol) plot( c(-100, 100), c(-100, 100), type = "n", xlab = "", ylab = "", axes = FALSE, asp = 1 ) rasterImage(image, -100, -100, 100, 100) par(opar)
Here is how to apply the Möbius transformation for one value of the power \(t\):
Mobius <- M_power_t(gamma = 0.7 - 0.3i, t = ...) a <- Mobius["a"] b <- Mobius["b"] c <- Mobius["c"] d <- Mobius["d"]; f <- Vectorize(function(x, y){ q0 <- x + 1i*y q <- (a*q0 + b) / (c*q0 + d) if(Mod(q) > 0.9999 || (Im(q) == 0 && Re(q) <= 0)){ return(bkgcol) } tau <- -1i * log(q) / pi z <- eta(tau) colormap(z) }) x <- y <- seq(-1, 1, len = 2000) image <- outer(x, y, f)
Then it suffices to run this code for \(t\) varying from \(0\) to \(2\), and to save the image for each value of \(t\). But this would be very slow. Actually I implemented the image generation with Rcpp. Here is the result:
My Rcpp code is available in the Github version of the jacobi package. The R code which generates an image for one value of \(t\) is:
x <- seq(-1, 1, len = 2000L) gamma <- 0.7 - 0.3i t <- ... image <- jacobi:::Image_eta(x, gamma, t) opar <- par(mar = c(0,0,0,0), bg = bkgcol) plot( c(-100, 100), c(-100, 100), type = "n", xlab = "", ylab = "", axes = FALSE, asp = 1 ) rasterImage(image, -100, -100, 100, 100) par(opar)
You can also play with jacobi:::Image_E4
and
jacobi:::Image_E6
, which respectively generate a
visualization of the Eisenstein series of weight
\(4\) and a visualization of the
Eisenstein series of weight \(6\).
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.