Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In a (possibly infinite) countable setting, it seems to me one gain (?) is that approximating expectations by Monte Carlo no longer requires iid simulations in the sense that once visited, atoms need not be visited again. Self-avoiding random walks and their generalisations thus appear as a natural substitute for MC(MC) methods in this setting, provided finding unexplored atoms proves manageable. For instance, a stopping rule is always available, namely that the cumulated weight of the visited fraction of the space is close enough to one. The above picture shows a toy example on a 500 x 500 grid with 0.1% of the mass remaining at the almost invisible white dots. (In my experiment, neighbours for the random exploration were chosen at random over the grid, as I assumed no global information was available about the repartition over the grid either of mass function or of the function whose expectation was seeked.)
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.