sum of Paretos

[This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

A rather curious question on X validated about the evolution of

\mathbb E^{U,V}\left[\sum_{i=1}^M U_i\Big/\sum_{i=1}^M U_i/V_i \right]\quad U_i,V_i\sim\mathcal U(0,1)

when $M$ increases. Actually, this expectation is asymptotically equivalent to

\mathbb E^{V}\left[M\big/\sum_{i=1}^M 2U_i/V_i \right]\quad U_i,V_i\sim\mathcal U(0,1)

or again

\mathbb E^{V}\left[1\big/(1+2\overline R_{M/2})\right]

where the average is made of Pareto (1,1), since one can invoke Slutsky many times. (And the above comparison of the integrated rv’s does not show a major difference.) Comparing several Monte Carlo sequences shows a lot of variability, though, which is not surprising given the lack of expectation of the Pareto (1,1) distribution. But over the time I spent on that puzzle last week end, I could not figure the limiting value, despite uncovering the asymptotic behaviour of the average.

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)