Theory and Methods for Inference in Multi-armed Bandit Problems
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Theory and Methods for Inference in Multi-armed Bandit Problems
Multi-armed bandit (MAB) algorithms have been argued for decades as useful to conduct adaptively-randomized experiments. By skewing the allocation of the arms towards the more efficient or informative ones, they have the potential to enhance participants’ welfare, while resulting in a more flexible, efficient, and ethical alternative compared to traditional fixed studies. However, such allocation strategies complicate the problem of statistical inference. It is now recognized that traditional inference methods are typically not valid when used in MAB-collected data, leading to considerable biases in classical estimators and other relevant issues in hypothesis testing problems.
When & Where:
- Wednesday, May 11th, 7:00 PT / 10:00 EST / 16:00 CET.
- Online, via Zoom. The registration form is available here.
Speakers:
- Anand Kalvit, Columbia University Title: “A Closer Look at the Worst-case Behavior of Multi-armed Bandit Algorithms”
- Aaditya Ramdas, Carnegie Mellon University Title: “Safe, Anytime-Valid Inference in the face of 3 sources of bias in bandit data analysis”
- Rouhan Zhan, Stanford University Title: “Inference on Adaptively Collected Data”
Discussant:
- Prof. Assaf Zeevi, Columbia University
The webinar is part of YoungStatS project of the Young Statisticians Europe initiative (FENStatS) supported by the Bernoulli Society for Mathematical Statistics and Probability and the Institute of Mathematical Statistics (IMS).
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.