null recurrent = zero utility?
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The stability result that the ratio
converges holds for a Harris π-null-recurrent Markov chain for all functions f,g in L¹(π) [Meyn & Tweedie, 1993, Theorem 17.3.2] is rather fascinating. However, it is unclear it can be useful in simulation environments, as for the integral priors we have been studying over the years with Juan Antonio Cano and Diego Salmeron Martinez. Above, the result of an experiment where I simulated a Markov chain as a Normal random walk in dimension one, hence a Harris π-null-recurrent Markov chain for the Lebesgue measure λ, and monitored the stabilisation of the ratio (1) when using two densities for f and g, to its expected value (1, shown by a red horizontal line). There is quite a variability in the outcome (repeated 100 times), but the most intriguing is the quick stabilisation of most cumulated averages to values different from 1. Even longer runs display this feature
which I would blame on the excursions of the random walk far away from the central regions for both f and g, that is on long sequences where zeroes keep being added to numerator and denominators in (1). As far as integral approximation is concerned, this is not very helpful!
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.