Selection of Priors in Bayesian Structural Equation Modeling

[This article was first published on YoungStatS, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Selection of Priors in Bayesian Structural Equation Modelling

Structural equation modeling (SEM) is an important framework within the social sciences that encompasses a wide variety of statistical models. Traditionally, estimation of SEMs has relied on maximum likelihood. Unfortunately, there also exist a variety of situations in which maximum likelihood performs subpar. This led researchers to turn to alternative estimation methods, in particular, Bayesian estimation of SEMs or BSEM. However, it is currently unclear how to specify the prior distribution in order to attain the advantages of Bayesian approaches.

On the webinar, selected statisticians will present their recent works on the topic.

When & Where:

  • Wednesday, April 20th, 7:00 PT / 10:00 EST / 16:00 CET
  • Online, via Zoom. The registration form is available here.

Speakers:

Discussant:

The webinar is part of YoungStatS project of the Young Statisticians Europe initiative (FENStatS) supported by the Bernoulli Society for Mathematical Statistics and Probability and the Institute of Mathematical Statistics (IMS).

To leave a comment for the author, please follow the link and comment on their blog: YoungStatS.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)