Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In a recent post I explained how to decorate a surface with moving colors with the Python library PyVista. Here I expose this method for the R package rgl.
I will take a Hopf torus with fives lobes for the illustration. The
following R function is a slight modification of the
parametric3d
function of the
misc3d package. It is more efficient for the Hopf torus
parameterization and it returns a rgl object of class
mesh3d
.
library(misc3d) library(rgl) parametricMesh3d <- function( Fxyz, umin, umax, vmin, vmax, nu, nv ){ u <- seq(umin, umax, length.out = nu) v <- seq(vmin, vmax, length.out = nv) tg <- misc3d:::expandTriangleGrid(u, v) f <- function(uv) Fxyz(uv[, 1L], uv[, 2L]) v1 <- f(tg$v1) v2 <- f(tg$v2) v3 <- f(tg$v3) tris <- makeTriangles(v1, v2, v3) mesh0 <- misc3d:::t2ve(tris) addNormals( tmesh3d( vertices = mesh0$vb, indices = mesh0$ib ) ) }
The R function below is the parameterization of the Hopf torus.
HTxyz <- function(u, v, nlobes = 5, A = 0.38){ C <- pi/2 - (pi/2-A)*cos(u*nlobes) sinC <- sin(C) D <- u + A*sin(2*u*nlobes) p1 <- cos(C) + 1 p2 <- sinC * cos(D) p3 <- sinC * sin(D) cos_v <- cos(v) sin_v <- sin(v) x1 <- cos_v*p3 + sin_v*p2 x2 <- cos_v*p2 - sin_v*p3 x3 <- sin_v * p1 xden <- sqrt(2*p1) - cos_v*p1 cbind(x1/xden, x2/xden, x3/xden) }
Let’s make the Hopf torus mesh now.
mesh <- parametricMesh3d( HTxyz, umin = 0, umax = 2*pi, vmin = -pi, vmax = pi, nu = 600, nv = 400 )
We will assign a color to each point on the surface, according to the distance from the point to the origin. We calculate these distances below, and we linearly map them to the interval $[0, 2].
d <- sqrt(apply(mesh$vb[-4L, ], 2L, crossprod)) d <- 2*pi * (d - min(d)) / diff(range(d))
Now we introduce a color palette function. The
trekcolors package has nice color palettes. I’m taking
the dominion
palette.
library(trekcolors) fpalette <- colorRamp( trek_pal("dominion"), bias = 0.6, interpolate = "spline" )
This function fpalette
assign a color, given by its RGB
values, to each number between
\(0\) and
\(1\). As in Python, we will calculate
\(\sin(d -t)\) to move the colors, with
\(t\) varying from
\(0\) to
\(2\pi\). The sine function takes its
values in \([-1, 1]\) so we will map
this interval to \([0,1]\) with the
affine function
\(x \mapsto \frac{x+1}{2}\) in order to
apply the fpalette
function.
We will also rotate the Hopf torus around the \(z\)-axis. By the symmetry of the Hopf torus, it suffices to make the rotation with an angle varying from \(0\) to \(2\pi/5\).
t_ <- seq(0, 2*pi, length.out = 73)[-1L] angle_ <- seq(0, 2*pi/5, length.out = 73)[-1L] for(i in seq_along(t_)){ RGB <- fpalette( (sin(d-t_[i])+1)/2 ) mesh[["material"]] <- list(color = rgb(RGB[, 1L], RGB[, 2L], RGB[, 3L], maxColorValue = 255)) rmesh <- rotate3d(mesh, angle_[i], 0, 0, 1) open3d(windowRect = c(50, 50, 562, 562)) view3d(0, 0, zoom = 0.55) spheres3d(0, 0, 0, radius = 11, color = "white", alpha = 0) # to fix the view shade3d(rmesh) rgl.snapshot(sprintf("pic%03d.png", i)) close3d() }
This code generates a series of png
files
pic001.png
, …, pic072.png
. Using
ImageMagick or gifski, we obtain this
gif
animation from these files:
Very well. But these are not my favorite colors. And I prefer the Hopf
torus with three lobes. Below it is, decorated with the
klingon
color palette of trekcolors; I
prefer this one.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.