Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
library(tidyverse) library(tidymodels) library(probably) library(finetune) library(textrecipes) library(stopwords) library(wesanderson) library(kableExtra) library(clock) library(glue) library(janitor) library(vip) library(ggrepel) library(tictoc) library(doParallel) registerDoParallel(cores = 6) theme_set(theme_bw()) (cols <- wes_palette(name = "Darjeeling2"))
The Natural History Museum began recording cetacean (whales, dolphins and porpoises) strandings in 1913. I’d like to explore this 1913-1989 dataset.
strandings_df <- read_csv("strandings.csv") %>% clean_names() %>% mutate( date = date_parse(date, format = "%d/%m/%Y"), length = parse_number(length_et), species_lumped = fct_lump_n(species, 20), across(ends_with("_val"), as.integer) ) # glimpse(strandings_df)
Exploratory
Some of the species
labels contain a question mark or forward slash. This indicates uncertainty, so it might be fun to see if a machine learning model (multiclass classification) could learn from the known species and suggest an appropriate species
where it’s uncertain.
strandings_df2 <- strandings_df %>% mutate(species_uncertainty = if_else(str_detect(species, "[?/]"), "Uncertain", "Known")) strandings_df2 %>% filter(species_uncertainty == "Uncertain") %>% count(species, sort = TRUE, name = "Count") %>% slice_head(n = 6) %>% kbl() %>% kable_material()
species | Count |
---|---|
delphis/coeruleoalba | 48 |
phocoena? | 42 |
melaena? | 20 |
delphis? | 18 |
truncatus? | 18 |
acutorostrata? | 12 |
The date
variable has many NA’s. Fortunately, the components to construct many of these are in the year_val
, month_val
and day_val
variables. With a little wrangling and imputation, we can coalesce these variables into a new date. This will be useful since plots of sample species
by year
, month
and week
of stranding suggest a de-constructed date
could be a useful predictor.
strandings_df2 %>% select(date, year_val, month_val, day_val) %>% summary() ## date year_val month_val day_val ## Min. :1913-02-13 Min. : 0 Min. : 0.000 Min. : 0.00 ## 1st Qu.:1933-09-09 1st Qu.:1933 1st Qu.: 4.000 1st Qu.: 9.00 ## Median :1954-04-13 Median :1955 Median : 7.000 Median :16.00 ## Mean :1955-01-08 Mean :1954 Mean : 6.766 Mean :15.66 ## 3rd Qu.:1979-03-21 3rd Qu.:1979 3rd Qu.:10.000 3rd Qu.:22.00 ## Max. :1989-12-25 Max. :1989 Max. :12.000 Max. :31.00 ## NA's :121 strandings_df3 <- strandings_df2 %>% group_by(species) %>% mutate( month_val = if_else(month_val == 0, mean(month_val) %>% as.integer(), month_val), day_val = if_else(day_val == 0, mean(day_val) %>% as.integer(), day_val), day_val = if_else(day_val == 0, 1L, day_val), date2 = date_build(year_val, month_val, day_val, invalid = "NA"), ) %>% ungroup() %>% mutate(date3 = coalesce(date, date2)) %>% arrange(id) %>% mutate(date = if_else(is.na(date), lag(date3), date3)) %>% select(-date2, -date3, -ends_with("_val")) example_species <- c("musculus", "melas", "crassidens", "borealis", "coeruleoalba") known_species <- strandings_df3 %>% filter(species_uncertainty == "Known") plot_date_feature <- function(var) { known_species %>% mutate( year = get_year(date), month = get_month(date), week = as_iso_year_week_day(date) %>% get_week() ) %>% filter(species %in% example_species) %>% count(species, {{ var }}) %>% ggplot(aes(species, {{ var }})) + geom_violin( alpha = 0.7, fill = cols[3], show.legend = FALSE ) + coord_flip() + labs( title = glue("Variation in {str_to_title(as.character(var))}", " of Stranding for Known Species"), x = NULL, y = glue("{str_to_title(as.character(var))}") ) } c("year", "month", "week") %>% map(sym) %>% map(plot_date_feature) ## [[1]]
## ## [[2]]
## ## [[3]]
Do latitude
and longitude
carry useful predictive information?
A geospatial visualisation of strandings shows some species
do gravitate towards particular stretches of coastline, e.g. “acutus” and “albirostris” to the east, and “coeruleoalba” to the south-west.
Some species
may also be more prone to mass stranding, so something that indicates whether a species
has such a history (in these data) may be worth including in the mix.
uki <- map_data("world", region = c("uk", "ireland")) labels <- c("Mass", "Single") uki %>% ggplot() + geom_map(aes(long, lat, map_id = region), map = uki, colour = "black", fill = "grey90", size = 0.1) + geom_jitter(aes(longitude, latitude, colour = mass_single, size = mass_single), alpha = 0.5, data = known_species) + facet_wrap(~ species_lumped, nrow = 3) + coord_map("mollweide") + scale_size_manual(values = c(1, 0.5), labels = labels) + scale_colour_manual(values = cols[c(3, 2)], labels = labels) + theme_void() + theme(legend.position = "top", strip.text = element_text(colour = "grey50")) + labs(title = "Strandings by Species", colour = NULL, size = NULL)
# Add history of mass stranding strandings_df4 <- strandings_df3 %>% group_by(species) %>% mutate(mass_possible = min(mass_single, na.rm = TRUE)) %>% ungroup()
Some records are missing the length
measurement of the mammal. Nonetheless, where present, this is likely to be predictive, and may help, for example, separate species labelled as “delphis/coeruleoalba” where the length
is at the extreme ends of the “delphis” range as we see below. And the range of length
may differ by mammal sex
.
known_species %>% mutate(sex = case_when( sex == "M" ~ "Male", sex == "F" ~ "Female", TRUE ~ "Unknown" )) %>% filter(species_lumped != "Other") %>% count(species_lumped, length, sex) %>% mutate(species_lumped = fct_reorder(species_lumped, desc(length), min, na.rm = TRUE)) %>% ggplot(aes(species_lumped, length)) + geom_violin(aes(fill = if_else(str_detect(species_lumped, "^de|^co"), TRUE, FALSE)), show.legend = FALSE) + facet_wrap(~ sex) + scale_fill_manual(values = cols[c(1, 5)]) + coord_flip() + labs(title = "Variation in Species Length by Sex", x = NULL, y = "Length (metres)")
With map coordinates not always available, county
could be, with a little string cleaning, a useful additional predictor.
strandings_df4 %>% count(county) %>% filter(str_detect(county, "Shet|Northumberland")) %>% kbl() %>% kable_material()
county | n |
---|---|
Fair Isle, Shetland Isles | 1 |
Northumberland | 89 |
Northumberland. | 1 |
Shetland Islands, Scotland | 232 |
Shetland Isles, Scotland | 35 |
Shetland, Scotland | 1 |
Shetlands, Scotland | 1 |
regex_pattern <- c("[,/].*$", "(?<!Che|Hamp|Lanca|North York)-?shire", " Isl.*$", " &.*$", "[-.]$") strandings_df5 <- strandings_df4 %>% mutate( county = str_remove_all(county, str_c(regex_pattern, collapse = "|")), county = recode( county, "Carnarvon" = "Caernarvon", "E.Lothian" = "East Lothian", "Shetlands" = "Shetland", "W.Glamorgan" = "West Glamorgan", "S.Glamorgan" = "South Glamorgan" ) ) strandings_df4 %>% summarise(counties_before = n_distinct(county)) ## # A tibble: 1 × 1 ## counties_before ## <int> ## 1 146 strandings_df5 %>% summarise(counties_after = n_distinct(county)) ## # A tibble: 1 × 1 ## counties_after ## <int> ## 1 109
Whilst count
also appears to hold, based on the plot pattern below, species-related information, I’m not going to use it as a predictor as we do not know enough about how it was derived, as reflected in these variable descriptions.
strandings_df5 %>% ggplot(aes(species, count, colour = species_uncertainty)) + geom_jitter(alpha = 0.5, size = 2) + coord_flip() + scale_y_log10() + scale_colour_manual(values = cols[c(1, 5)]) + labs(title = "How 'Count' Relates to Species", x = NULL, y = "Count (log10)", colour = "Species") + theme(legend.position = "top")
Modelling
So, I’ll set aside the rows where the species is uncertain (to be used later for new predictions), and I’ll train a model on 75% of known species, and test it on the remaining 25%. I’ll use the following predictors:
latitude
andlongitude
- Mammal
length
andsex
mass_possible
indicating aspecies
history of mass strandingsdate
reported converted into decimal, week, month and yearcounty
may be useful, especially where the longitude and latitude are missingfam_genus
which narrows the range of likely species
I’d like to also make use of the textrecipes package. I can tokenise the textual information in comment
and location
to see if these add to the predictive power of the model.
I’ll tune the model using tune_race_anova
which quickly discards hyperparameter combinations showing little early promise.
known_species <- strandings_df5 %>% filter(species_uncertainty == "Known") %>% mutate(across( c( "species", "mass_single", "mass_possible", "county", "location", "sex", "fam_genus" ), factor )) set.seed(123) data_split <- known_species %>% mutate(species = fct_drop(species)) %>% initial_split(strata = species) train <- data_split %>% training() test <- data_split %>% testing() predictors <- c( "latitude", "longitude", "length", "mass_single", "mass_possible", "county", "location", "comment", "sex", "fam_genus" ) recipe <- train %>% recipe() %>% update_role(species, new_role = "outcome") %>% update_role(all_of(predictors), new_role = "predictor") %>% update_role(!has_role("outcome") & !has_role("predictor"), new_role = "id") %>% step_date(date, features = c("decimal", "week", "month", "year"), label = FALSE) %>% step_tokenize(location, comment) %>% step_stopwords(location, comment) %>% step_tokenfilter(location, comment, max_tokens = tune()) %>% #100 step_tf(location, comment) %>% step_zv(all_predictors()) %>% step_dummy(all_nominal_predictors()) xgb_model <- boost_tree(trees = tune(), # 440 mtry = tune(), # 0.6 learn_rate = 0.02) %>% set_mode("classification") %>% set_engine("xgboost", count = FALSE, verbosity = 0, tree_method = "hist") xgb_wflow <- workflow() %>% add_recipe(recipe) %>% add_model(xgb_model) set.seed(9) folds <- vfold_cv(train, strata = species) set.seed(10) tic() tune_result <- xgb_wflow %>% tune_race_anova( resamples = folds, grid = crossing( trees = seq(200, 520, 40), mtry = seq(0.5, 0.7, 0.1), max_tokens = seq(80, 120, 20) ), control = control_race(), metrics = metric_set(accuracy) ) toc() ## 438.622 sec elapsed tune_result %>% plot_race() + labs(title = "Early Elimination of Parameter Combinations")
set.seed(123) xgb_fit <- xgb_wflow %>% finalize_workflow(tune_result %>% select_best(metric = "accuracy")) %>% fit(train)
Having fitted the model with the 3080 records in the training data, I’ll test its accuracy on the 1028 records of known species the model has not yet seen.
Without spending time on alternative models, we’re getting a reasonable result for the “porpoise” of this post, as reflected in both the accuracy metric and confusion matrix.
xgb_results <- xgb_fit %>% augment(new_data = test) xgb_results %>% accuracy(species, .pred_class) ## # A tibble: 1 × 3 ## .metric .estimator .estimate ## <chr> <chr> <dbl> ## 1 accuracy multiclass 0.993 xgb_results %>% conf_mat(species, .pred_class) %>% autoplot(type = "heatmap") + scale_fill_gradient2( mid = "white", high = cols[1], midpoint = 0 ) + labs(title = "Confusion Matrix") + theme(axis.text.x = element_text(angle = 45, hjust = 1))
The top variable importance scores include fam_genus
, many of the comment
tokens, plus length
, mass-possible
, date_decimal
, date_year
, and latitude
.
vi(xgb_fit %>% extract_fit_parsnip()) %>% arrange(desc(Importance)) %>% mutate(ranking = row_number()) %>% slice_head(n = 40) %>% kbl() %>% kable_material()
Variable | Importance | ranking |
---|---|---|
fam_genus_Globicephala | 0.1170072 | 1 |
fam_genus_Phocoena | 0.0944623 | 2 |
tf_comment_unidentified | 0.0759441 | 3 |
fam_genus_Delphinus | 0.0711414 | 4 |
tf_comment_false | 0.0504881 | 5 |
fam_genus_Tursiops | 0.0465281 | 6 |
fam_genus_Lagenorhynchus | 0.0443353 | 7 |
tf_comment_porpoise | 0.0403505 | 8 |
tf_comment_sided | 0.0285027 | 9 |
fam_genus_Grampus | 0.0276863 | 10 |
tf_comment_lesser | 0.0275691 | 11 |
length | 0.0265941 | 12 |
fam_genus_Hyperoodon | 0.0232933 | 13 |
tf_comment_beaked | 0.0230283 | 14 |
fam_genus_Orcinus | 0.0194158 | 15 |
fam_genus_Pseudorca | 0.0186163 | 16 |
tf_comment_dolphin | 0.0182272 | 17 |
tf_comment_bottle | 0.0169981 | 18 |
fam_genus_Physeter | 0.0158601 | 19 |
tf_comment_rorqual | 0.0138746 | 20 |
fam_genus_Ziphius | 0.0131200 | 21 |
mass_possible_S | 0.0131200 | 22 |
fam_genus_Mesoplodon | 0.0125859 | 23 |
fam_genus_odontocete | 0.0107553 | 24 |
tf_comment_fin | 0.0106025 | 25 |
tf_comment_long | 0.0102623 | 26 |
date_decimal | 0.0100120 | 27 |
tf_comment_finned | 0.0093989 | 28 |
tf_comment_nosed | 0.0093516 | 29 |
tf_comment_pilot | 0.0093481 | 30 |
tf_comment_common | 0.0089965 | 31 |
fam_genus_Stenella | 0.0085796 | 32 |
tf_comment_whale | 0.0084079 | 33 |
tf_comment_risso’s | 0.0082206 | 34 |
date_year | 0.0072894 | 35 |
tf_comment_killer | 0.0070108 | 36 |
tf_comment_white | 0.0067963 | 37 |
fam_genus_cetacean | 0.0060907 | 38 |
tf_comment_sowerby’s | 0.0039810 | 39 |
latitude | 0.0030011 | 40 |
Do the predictions look reasonable?
The class probability is spread across 27 species. I’m going to set a high threshold of 0.9, meaning the predicted species needs to be a pretty confident prediction.
xgb_preds <- xgb_fit %>% augment(new_data = strandings_df5 %>% filter(species_uncertainty == "Uncertain")) species_levels <- xgb_preds %>% select(starts_with(".pred_"), -.pred_class) %>% names() %>% as.factor() subset_df <- xgb_preds %>% mutate( .class_pred = make_class_pred( .pred_acutorostrata, .pred_acutus, .pred_albirostris, .pred_ampullatus, .pred_bidens, .pred_borealis, .pred_breviceps, .pred_cavirostris, .pred_coeruleoalba, .pred_crassidens, .pred_delphis, .pred_electra, .pred_europaeus, .pred_griseus, .pred_leucas, .pred_macrocephalus, .pred_melaena, .pred_melas, .pred_mirus, .pred_monoceros, .pred_musculus, .pred_novaeangliae, .pred_orca, .pred_phocoena, .pred_physalus, .pred_sp.indet., .pred_truncatus, levels = species_levels, min_prob = .9 ) ) subset_df %>% group_by(species, .class_pred) %>% summarise(n = n()) %>% arrange(species, desc(n)) %>% kbl() %>% kable_material()
species | .class_pred | n |
---|---|---|
acutorostrata? | .pred_acutorostrata | 12 |
acutorostrata/borealis | .pred_acutorostrata | 1 |
acutus? | .pred_acutus | 3 |
albirostris? | .pred_albirostris | 9 |
ampullatus? | .pred_ampullatus | 3 |
bidens? | .pred_bidens | 2 |
bidens? | [EQ] | 1 |
cavirostris? | .pred_cavirostris | 7 |
coeruleoalba? | .pred_coeruleoalba | 1 |
delphis? | .pred_delphis | 18 |
delphis/coeruleoalba | [EQ] | 48 |
griseus? | .pred_griseus | 2 |
macrocephalus? | .pred_macrocephalus | 2 |
melaena? | .pred_melaena | 20 |
orca? | .pred_orca | 4 |
phocoena? | .pred_phocoena | 42 |
physalus? | .pred_physalus | 4 |
physalus/acutorostrata | [EQ] | 1 |
truncatus? | .pred_truncatus | 18 |
truncatus/albirostris | [EQ] | 5 |
The majority of the 203 uncertain records are predicted to be as suspected in the original labelling. The remainder are classed as equivocal as they have not met the high bar of a 0.9-or-above probability for a single species.
R Toolbox
Summarising below the packages and functions used in this post enables me to separately create a toolbox visualisation summarising the usage of packages and functions across all posts.
Package | Function |
---|---|
base | as.character[2]; as.integer[3]; c[9]; comment[3]; conflicts[1]; cumsum[1]; function[2]; is.na[1]; length[2]; log10[1]; mean[2]; min[1]; names[1]; search[1]; seq[3]; set.seed[4]; sum[1]; summary[1] |
clock | as_iso_year_week_day[1]; date_build[1]; date_parse[1]; get_month[1]; get_week[1]; get_year[1] |
doParallel | registerDoParallel[1] |
dplyr | filter[12]; across[2]; arrange[5]; case_when[1]; coalesce[1]; count[4]; desc[5]; group_by[4]; id[1]; if_else[9]; mutate[18]; n[2]; n_distinct[2]; recode[1]; row_number[1]; select[3]; slice_head[2]; summarise[4]; ungroup[2] |
finetune | control_race[1]; plot_race[1]; tune_race_anova[1] |
forcats | fct_drop[1]; fct_lump_n[1]; fct_reorder[1] |
ggplot2 | aes[6]; coord_flip[3]; coord_map[1]; element_text[2]; facet_wrap[2]; geom_jitter[2]; geom_map[1]; geom_violin[2]; ggplot[4]; labs[6]; map_data[1]; scale_colour_manual[2]; scale_fill_gradient2[1]; scale_fill_manual[1]; scale_size_manual[1]; scale_y_log10[1]; theme[3]; theme_bw[1]; theme_set[1]; theme_void[1] |
glue | glue[2] |
janitor | clean_names[1] |
kableExtra | kable_material[5]; kbl[5] |
parsnip | boost_tree[1]; set_engine[1]; set_mode[1] |
probably | make_class_pred[1] |
purrr | map[3]; map2_dfr[1]; possibly[1] |
readr | parse_number[1]; read_csv[1]; read_lines[1] |
recipes | all_nominal_predictors[1]; all_predictors[1]; has_role[2]; step_date[1]; step_dummy[1]; step_zv[1]; update_role[3] |
rsample | initial_split[1]; testing[1]; training[1]; vfold_cv[1] |
stats | var[3] |
stringr | str_c[6]; str_count[1]; str_detect[5]; str_remove[2]; str_remove_all[2]; str_starts[1]; str_to_title[2] |
textrecipes | step_stopwords[1]; step_tf[1]; step_tokenfilter[1]; step_tokenize[1] |
tibble | as_tibble[1]; tibble[2]; enframe[1] |
tictoc | tic[1]; toc[1] |
tidyr | crossing[1]; unnest[1] |
tune | finalize_workflow[1]; select_best[1]; tune[3] |
wesanderson | wes_palette[1] |
workflows | add_model[1]; add_recipe[1]; workflow[1] |
yardstick | accuracy[2]; conf_mat[1]; metric_set[1] |
Citation
Natural History Museum (2019). Data Portal Query on “UK cetacean strandings 1913-1989” created at 2019-08-10 16:41:12.475340 PID https://doi.org/10.5519/qd.iwg63595. Subset of “Historical UK cetacean strandings dataset (1913-1989)” (dataset) PID https://doi.org/10.5519/0028204.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.