New paper in Computational Brain and Behavior: Sample size determination for Bayesian hierarchical models commonly used in psycholinguistics

[This article was first published on Shravan Vasishth's Slog (Statistics blog), and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

We have just had a paper accepted in the journal Computational Brain and Behavior. This is part of a special issue that responds to the following paper on linear mixed models:
van Doorn, J., Aust, F., Haaf, J.M. et al. Bayes Factors for Mixed Models. Computational Brain and Behavior (2021). https://doi.org/10.1007/s42113-021-00113-2
There are quite a few papers in that special issue, all worth reading, but I especially liked the contribution by Singmann et al: Statistics in the Service of Science: Don’t let the Tail Wag the Dog (https://psyarxiv.com/kxhfu/) They make some very good points in reaction to van Doorn et al’s paper.


Our paper: Shravan Vasishth, Himanshu Yadav, Daniel J. Schad, and Bruno Nicenboim. Sample size determination for Bayesian hierarchical models commonly used in psycholinguistics. Computational Brain and Behavior, 2021.
Abstract: We discuss an important issue that is not directly related to the main theses of the van Doorn et al. (2021) paper, but which frequently comes up when using Bayesian linear mixed models: how to determine sample size in advance of running a study when planning a Bayes factor analysis. We adapt a simulation-based method proposed by Wang and Gelfand (2002) for a Bayes-factor based design analysis, and demonstrate how relatively complex hierarchical models can be used to determine approximate sample sizes for planning experiments.
Code and data: https://osf.io/hjgrm/
pdf: here

To leave a comment for the author, please follow the link and comment on their blog: Shravan Vasishth's Slog (Statistics blog).

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)