Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
You can read the original post in its original format on Rtask website by ThinkR here: Row-wise operations with the {tidyverse}
We are often asked how to perform row-wise operations in a data.frame
(or a tibble
) the answer is, as usual, “it depends” ?
Let’s look at some cases that should fit your needs.
library(tidyverse)
Let’s make an example dataset:
base <- tibble::tibble( a = 1:10, b = 1:10, c = 21:30 ) %>% head() base ## # A tibble: 6 × 3 ## a b c ## <int> <int> <int> ## 1 1 1 21 ## 2 2 2 22 ## 3 3 3 23 ## 4 4 4 24 ## 5 5 5 25 ## 6 6 6 26
Let’s say we want to add a new
column whose value will depend on the content, per row, of columns a
, b
and c
of our base
example
Like this:
# A tibble: 6 x 4 a b c new <int> <int> <int> <chr> 1 1 1 21 a equals 1 2 2 2 22 other case 3 3 3 23 other case 4 4 4 24 other case 5 5 5 25 c equals 25 6 6 6 26 other case
With case_when()
base %>% mutate( new = case_when( a == 1 ~ "a equals 1", c == 25 ~ "c equals 25", TRUE ~ "other case" ) ) ## # A tibble: 6 × 4 ## a b c new ## <int> <int> <int> <chr> ## 1 1 1 21 a equals 1 ## 2 2 2 22 other case ## 3 3 3 23 other case ## 4 4 4 24 other case ## 5 5 5 25 c equals 25 ## 6 6 6 26 other case
case_when()
is nice, it’s much more readable than nested ifelse()
, but it can quickly become more complex.
So let’s create a function which, depending on the values of a
, b
, c
, returns the expected value.
Depending on the case (and your skills) you will sometimes have a vectorized function and sometimes a non-vectorized function. It is always better to create a vectorized function, but it is not always possible.
A vectorized function is a function that can be directly applied to a set of vectors and that returns a response vector.
An example of a vectorized function that repeats the operations of the previous case_when()
:
vectorised_function <- function(a, b, c, ...){ ifelse(a == 1 , "a equals 1", ifelse(c == 25 , "c equals 25", "other case" )) } vectorised_function(a = 1, c = 25, b = "R") ## [1] "a equals 1" vectorised_function(a = c(1, 1, 3), c = 27:25, b = "R") ## [1] "a equals 1" "a equals 1" "c equals 25"
Here is the “same” function, but not vectorized:
non_vectorised_function <- function(a, b, c, ...){ if ( a == 1 ) { return("a equals 1") } if ( c == 25 ) { return("c equals 25") } return("autre") } non_vectorised_function(a = 1, c = 25, b = "R") ## [1] "a equals 1" non_vectorised_function(a = c(1, 1, 3), c = 27:25, b = "R") # ne fonctionne pas ## Warning in if (a == 1) {: la condition a une longueur > 1 et seul le ## premier élément est utilisé ## [1] "a equals 1"
With a vectorized function
This is the simplest case, and the fastest too.
You can use it as is in a mutate()
:
base %>% mutate( new = vectorised_function(a = a, b = b, c = c) ) ## # A tibble: 6 × 4 ## a b c new ## <int> <int> <int> <chr> ## 1 1 1 21 a equals 1 ## 2 2 2 22 other case ## 3 3 3 23 other case ## 4 4 4 24 other case ## 5 5 5 25 c equals 25 ## 6 6 6 26 other case
With a NON vectorized function
The result returned by a mutate()
is not correct (the first value returned is repeated…)
base %>% mutate( new = non_vectorised_function(a = a, b = b, c = c) ) ## Warning in if (a == 1) {: la condition a une longueur > 1 et seul le ## premier élément est utilisé ## # A tibble: 6 × 4 ## a b c new ## <int> <int> <int> <chr> ## 1 1 1 21 a equals 1 ## 2 2 2 22 a equals 1 ## 3 3 3 23 a equals 1 ## 4 4 4 24 a equals 1 ## 5 5 5 25 a equals 1 ## 6 6 6 26 a equals 1
So let’s change our strategy.
With rowwise()
rowwise()
is back in the {dplyr} world and is specifically designed for this case:
base %>% rowwise() %>% mutate( new = non_vectorised_function(a = a, b = b, c = c) ) ## # A tibble: 6 × 4 ## # Rowwise: ## a b c new ## <int> <int> <int> <chr> ## 1 1 1 21 a equals 1 ## 2 2 2 22 autre ## 3 3 3 23 autre ## 4 4 4 24 autre ## 5 5 5 25 c equals 25 ## 6 6 6 26 autre
With pmap()
base %>% mutate( new = pmap_chr(list(a = a, b = b, c = c), non_vectorised_function) ) ## # A tibble: 6 × 4 ## a b c new ## <int> <int> <int> <chr> ## 1 1 1 21 a equals 1 ## 2 2 2 22 autre ## 3 3 3 23 autre ## 4 4 4 24 autre ## 5 5 5 25 c equals 25 ## 6 6 6 26 autre
Bonus with Vectorize()
The Vectorize()
function allows to vectorize a function…
It’s a bit of a cheat, but it can help ?
base %>% mutate( new = Vectorize(non_vectorised_function)(a = a, b = b, c = c) ) ## # A tibble: 6 × 4 ## a b c new ## <int> <int> <int> <chr> ## 1 1 1 21 a equals 1 ## 2 2 2 22 autre ## 3 3 3 23 autre ## 4 4 4 24 autre ## 5 5 5 25 c equals 25 ## 6 6 6 26 autre
Row-wise operations are yours!
Experiment and tell us what your practices are!
To go further: https://dplyr.tidyverse.org/articles/rowwise.html
This post is better presented on its original ThinkR website here: Row-wise operations with the {tidyverse}
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.