TomTom Traffic

[This article was first published on R | datawookie, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

In the previous post I introduced the {tomtom} package and showed how it can be used for geographic routing. Now we’re going to look at the traffic statistics returned by the TomTom API.

As before we’ll need to load the {tomtom} package and specify an API. Then we’re ready to roll.

Bounding Box

We’ll be retrieving traffic incidents within a bounding box. We’ll define the longitude and latitude extrema of that box (in this case centred on Athens, Greece).

left <- 23.4
bottom <- 37.9
right <- 24.0
top <- 38.2

Traffic Incidents

Now call the incident_details() function to retrieve information on all incidents within that area.

incidents <- incident_details(left, bottom, right, top)

The expected duration and description of each incident is provided.

incidents %>% select(incident, begin, end)
# A tibble: 125 x 3
   incident begin                end                 
      <int> <chr>                <chr>               
 1        1 2021-07-26T10:44:30Z 2021-07-26T11:02:00Z
 2        2 2021-07-26T10:16:38Z 2021-07-26T11:18:00Z
 3        3 2021-07-26T10:33:30Z 2021-07-26T11:13:00Z
 4        4 2021-07-26T10:46:08Z 2021-07-26T11:12:00Z
 5        5 2021-07-26T10:43:00Z 2021-07-26T11:26:00Z
 6        6 2021-07-26T08:57:00Z 2021-07-26T11:14:00Z
 7        7 2021-07-26T10:30:30Z 2021-07-26T11:13:00Z
 8        8 2021-01-04T07:27:00Z 2021-12-31T20:00:00Z
 9        9 2021-07-20T09:14:13Z 2021-08-17T19:29:00Z
10       10 2021-01-04T07:27:00Z 2021-12-31T20:00:00Z
# … with 115 more rows

You can also get the type of the incident…

# A tibble: 3 x 2
  incident description       
     <int> <fct>             
1        1 Slow traffic      
2        2 Stationary traffic
3        3 Slow traffic      

… along with a description of where it begins and ends.

# A tibble: 3 x 2
  incident from                                   
     <int> <chr>                                  
1        1 Nea Peramos (Olympia Odos/A8)          
2        2 Adrianou Ave (Perifereiaki Aigaleo/A65)
3        3 Γεωργίου Παπανδρέου                    
# A tibble: 3 x 2
  incident to                                                             
     <int> <chr>                                                          
1        1 Stathmos Diodion Eleysinas (Olympia Odos/A8)                   
2        2 Aspropyrgos-Biomihaniki Periohi (A8) (Perifereiaki Aigaleo/A65)
3        3 Θεοδώρου Βασιλάκη                                              

Finally, the points field allows you to plot our the locations of each incident.

# A tibble: 125 x 8
   incident begin    end      description  from      to           length points 
      <int> <chr>    <chr>    <fct>        <chr>     <chr>         <dbl> <list> 
 1        1 2021-07… 2021-07… Slow traffic Nea Pera… Stathmos Di…  132.  <df[,2…
 2        2 2021-07… 2021-07… Stationary … Adrianou… Aspropyrgos…  799.  <df[,2…
 3        3 2021-07… 2021-07… Slow traffic Γεωργίου… Θεοδώρου Βα…  978.  <df[,2…
 4        4 2021-07… 2021-07… Queuing tra… Κρήτης    Αττική Οδός… 1134.  <df[,2…
 5        5 2021-07… 2021-07… Stationary … Αττική Ο… Κρήτης        866.  <df[,2…
 6        6 2021-07… 2021-07… Queuing tra… Iera Odo… Aspropyrgos… 3717.  <df[,2…
 7        7 2021-07… 2021-07… Stationary … Ougko Vi… Labraki Gr.…  204.  <df[,2…
 8        8 2021-01… 2021-12… Restrictions Mavromih… Kapetan Mat…   81.7 <df[,2…
 9        9 2021-07… 2021-08… Closed       Koumound… Gitchiou (E…   29.7 <df[,2…
10       10 2021-01… 2021-12… Restrictions Koumound… Mavromihali…   43.0 <df[,2…
# … with 115 more rows
# A tibble: 2,558 x 3
   incident   lon   lat
      <int> <dbl> <dbl>
 1        1  23.5  38.0
 2        1  23.5  38.0
 3        1  23.5  38.0
 4        1  23.5  38.0
 5        1  23.5  38.0
 6        1  23.5  38.0
 7        1  23.5  38.0
 8        2  23.6  38.0
 9        2  23.6  38.0
10        2  23.6  38.0
# … with 2,548 more rows

Do yourself a favour and open the above map in a separate tab. The intricate details of the city of Athens are quite fascinating.

The current implementation of the {tomtom} package is really only scratching the surface of the TomTom API. If anybody is keen to collaborate on this, get in touch!

To leave a comment for the author, please follow the link and comment on their blog: R | datawookie.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)