Delta Sensitivity of Interest Rate Swap

[This article was first published on K & L Fintech Modeling, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

This post explains how to calculate delta sensitivities or delta vector of interest rate swap, especially delta. delta can be calculated by either 1) zero delta or 2) market delta. To the best of our knowledge, FRTB can use these two methods but SIMM use the market Greeks. We implement R code for two approaches


Delta Sensitivity of LIBOR Interest Rate Swap



For detailed information about the Libor IRS swap pricing and zero curve bootstrapping, refer to the following posts.



In previous posts, we have priced a 5Y Libor IRS swap and generated a zero curve from market swap rates by using bootstrapping. Based on these works, we calculate Greeks of IRS. Since IRS does not have any option characteristics, our focus is to calculate the delta sensitivity. And for convenience, swap value is defined as (floating leg – fixed leg).


Delta Sensitivity


ISDA SIMM uses the following definitions of interest rate risk delta (\(x\) is a risk factor). There are, of course, several versions of it but they are all essentially the same.

\[\begin{align} \text{delta} &= V(x+0.5bp) – V(x-0.5bp) \\ \\ \text{delta} &= \frac{V(x+1bp) – V(x-1bp)}{2} \end{align}\]

For ease of notation, let \(z(t)\) and \(s(t)\) denote the (bootstrapped) zero rate and (market observed) swap rate at time t respectively.

There are two approaches for the calculation of delta: 1) zero delta, 2) market delta.


Zero Delta


Zero delta approach calculates delta sensitivities by bumping up or down zero rates one by one in order.

Once the zero curve (\(z(t)\)) is generated from market swap rates (\(s(t)\)), \[\begin{align} s(t) &= \{s(t_1), …, s(t_i), …, s(t_{ni})\} \\ z(t) &= Bootstrap(s(t)) \\ &= \{z(t_1), …, z(t_i), …, z(t_{ni})\} \end{align}\] Bumping up (\(z(t;t_i+0.5bp)\)) or down (\(z(t;t_i-0.5bp)\)), \(\text{delta}(t_i)\) is calculated and this process is applied for all \(t_i\). \[\begin{align} z(t;t_i+0.5bp) &= \{z(t_1), …, z(t_i)+0.5bp, …, z(t_{ni})\} \\ z(t;t_i-0.5bp) &= \{z(t_1), …, z(t_i)-0.5bp, …, z(t_{ni})\} \\ \text{delta}(t_i) &= V(z(t;t_i+0.5bp)) – V(z(t;t_i-0.5bp)) \end{align}\] Here, \(t_i\), \(i=1,2,…,n_i\) are maturities or dates of market swap rates at which the corresponding zero rates are bootstrapped.


Market Delta


Market delta approach calculates delta sensitivities by bumping up or down market swap rates one by one in order. Unlike the zero delta, every time we bump one market swap rate of a selected maturity, we should run a bootstrapping for finding new zero curve. Using this zero curve, we can calculate delta sensitivity at time \(t_i\) as follows. \[\begin{align} s(t;t_i+0.5bp) &= \{s(t_1), …, s(t_i)+0.5bp, …, s(t_{ni})\} \\ s(t;t_i-0.5bp) &= \{s(t_1), …, s(t_i)-0.5bp, …, s(t_{ni})\} \\ \\ z(t)^{up} &= Bootstrap(s(t;t_i+0.5bp)) \\ &= \{z(t_1)^{up}, …, z(t_i)^{up}, …, z(t_{ni})^{up}\} \\ z(t)^{down} &= Bootstrap(s(t;t_i-0.5bp)) \\ &= \{z(t_1)^{down}, …, z(t_i)^{down}, …, z(t_{ni})^{down}\} \\ \\ \text{delta}(t_i) &= V(z(t)^{up}) – V(z(t)^{down}) \end{align}\]

R code


The following R code calculates delta sensitivities of IRS using these two approaches.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
#=========================================================================#
# Financial Econometrics & Derivatives, ML/DL using R, Python, Tensorflow  
# by Sang-Heon Lee 
#
# https://kiandlee.blogspot.com
#————————————————————————-#
# Calculate Delta Sensitivities of Libor IRS
#=========================================================================#
 
graphics.off()  # clear all graphs
rm(list = ls()) # remove all files from your workspace
 
#=========================================================================
# Functions – Definition
#=========================================================================
 
#————————————————————–
# Calculation of IRS swap price
#————————————————————–
f_zero_prr_IRS < function(
    fixed_rate,                   # fixed rate
    vd.fixed_date, vd.float_date, # date for two legs
    vd.zero_date,  v.zero_rate,   # zero curve (dates, rates)
    d.spot_date,   no_amt,        # spot date, nominal amt
    save_cf_yn) {                 # “y” : CF save                     
 
    #———————————————————-
    # 0) Preprocessing
    #———————————————————-
    
    # convert spot date from date(d) to numeric(n)
    n.spot_date < as.numeric(d.spot_date)
    
    # Interpolation of zero curve
    vn.zero_date < as.numeric(vd.zero_date)
    f_linear     < approxfun(vn.zero_date, v.zero_rate, 
                          method=“linear”)
    vn.zero_date.inter < n.spot_date:max(vn.zero_date)
    v.zero_rate.inter  < f_linear(vn.zero_date)
    
    # number of CFs
    ni < length(vd.fixed_date)
    nj < length(vd.float_date)
    
    # output data.frame with CF dates and its interpolated zero
    df.fixed = data.frame(d.date = vd.fixed_date,
                          n.date = as.numeric(vd.fixed_date))
    df.float = data.frame(d.date = vd.float_date,
                          n.date = as.numeric(vd.float_date))
    
    #———————————————————-
    #  1)  Fixed Leg
    #———————————————————-
    
    # zero rate for discounting
    df.fixed$zero_DC = f_linear(as.numeric(df.fixed$d.date))
    
    # discount factor
    df.fixed$DF < exp(df.fixed$zero_DC*
                       (df.fixed$n.daten.spot_date)/365)
    
    # tau, CF
    for(i in 1:ni) {
        
        ymd      < df.fixed$d.date[i]
        ymd_prev < df.fixed$d.date[i1]
        if(i==1) ymd_prev < d.spot_date
        
        d < as.numeric(strftime(ymd, format = “%d”))
        m < as.numeric(strftime(ymd, format = “%m”))
        y < as.numeric(strftime(ymd, format = “%Y”))
        
        d_prev < as.numeric(strftime(ymd_prev, format = “%d”))
        m_prev < as.numeric(strftime(ymd_prev, format = “%m”))
        y_prev < as.numeric(strftime(ymd_prev, format = “%Y”))
        
        # 30I/360
        tau < (360*(yy_prev) + 30*(mm_prev) + (dd_prev))/360
        
        # cash flow rate
        df.fixed$rate[i] < fixed_rate
        
        # Cash flow at time ti
        df.fixed$CF[i] < fixed_rate*tau*no_amt # day fraction
    }
    
    # Present value of CF
    df.fixed$PV = df.fixed$CF*df.fixed$DF
    
    
    #———————————————————-
    #  2)  Floating Leg
    #———————————————————-
    
    # zero rate for discounting
    df.float$zero_DC = f_linear(as.numeric(df.float$d.date))
    
    # discount factor
    df.float$DF < exp(df.float$zero_DC*
                       (df.float$n.daten.spot_date)/365)
    
    # tau, forward rate, CF
    for(i in 1:nj) {
        
        date      < df.float$n.date[i]
        date_prev < df.float$n.date[i1]
        
        DF        < df.float$DF[i]
        DF_prev   < df.float$DF[i1]
        
        if(i==1) {
            date_prev < n.spot_date
            DF_prev   < 1
        }
        
        # ACT/360
        tau < (date  date_prev)/360
        
        # forward rate
        fwd_rate < (1/tau)*(DF_prev/DF1)
        
        # cash flow rate
        df.float$rate[i] < fwd_rate
        
        # Cash flow amount at time ti
        df.float$CF[i] < fwd_rate*tau*no_amt # day fraction
    }
    
    # Present value of CF
    df.float$PV = df.float$CF*df.float$DF
    
    # check for cash flows
    if (save_cf_yn == “y”) {
        # print(df.float); print(df.fixed)
        write.csv(df.float, “CF_float.csv”)
        write.csv(df.fixed, “CF_fixed.csv”)
    }
 
    return(sum(df.float$PV)  sum(df.fixed$PV))
}
 
 
#————————————————————–
# IRS swap zero curve generator
#————————————————————–
f_zero_maker_IRS < function(
    df.mt,                    # market information data.frame
                              # [d.date, swap_rate, source]]
    v.unknown_swap_maty_all,  # all unknown swap maturity
    vd.fixed_date,            # date for fixed leg
    vd.float_date,            # date for float leg
    d.spot_date,              # spot date
    no_amt) {                 # nominal principal amount
    
    # convert spot date from date(d) to numeric(n)
    n.spot_date < as.numeric(d.spot_date)
    
    # for bootstrapped zero curve
    df.zr < data.frame(
        d.date    = df.mt$d.date,
        n.date    = as.numeric(df.mt$d.date),
        tau       = as.numeric(df.mt$d.date)  n.spot_date,
        taui      = as.numeric(df.mt$d.date)  n.spot_date,
        swap_rate = df.mt$swap_rate, 
        zero_rate = rep(0,length(df.mt$d.date)),
        DF        = rep(0,length(df.mt$d.date)))
    
    # tau(i) = t(i) – t(i-1)
    df.zr$taui[2:nrow(df.zr)] < 
        df.zr$n.date[2:nrow(df.zr)]  
        df.zr$n.date[1:(nrow(df.zr)1)]
    
    # divide rows according to its source or instrument type
    rows_deposit < which(df.mt$source==“deposit”)
    rows_futures < which(df.mt$source==“futures”)
    rows_swap    < which(df.mt$source==“swap”)
    
    #————————————————————–
    # 3. Bootstrapping – Deposit
    #————————————————————–
    
    for(i in rows_deposit) {
        
        # 1) calculate discount factor for deposit
        df.zr$DF[i] < 1/(1+df.zr$swap_rate[i]*df.zr$tau[i]/360)
        
        # 2) convert DF to spot rate
        df.zr$zero_rate[i] < 365/df.zr$tau[i]*log(1/df.zr$DF[i])
    }
    
    #————————————————————–
    # 4. Bootstrapping – Futures
    #————————————————————–
    
    # No convexity adjustment is made
    for(i in rows_futures) {
        
        # 1) discount factor from t(i-1) to t(i)
        df.zr$DF[i] < 1/(1+df.zr$swap_rate[i]*df.zr$taui[i]/360)
        
        # 2) discount factor from spot date to t(i)
        df.zr$DF[i] < df.zr$DF[i1]*df.zr$DF[i]
        
        # 3) zero rate from discount factor
        df.zr$zero_rate[i] < 365/df.zr$tau[i]*log(1/df.zr$DF[i])
    }
    
    #————————————————————–
    # 5. Bootstrapping – Swaps
    #————————————————————–
    
    k < 1
    for(i in rows_swap) {
        
        # unknown swap maturity in year
        swap_maty < v.unknown_swap_maty_all[k]
        
        # 1) find one unknown zero rate for one swap maturity
        m<optim(0.01, objf,
            control = list(abstol=10^(20), reltol=10^(20),
                           maxit=50000, trace=2),
            method = c(“Brent”),
            lower = 0, upper = 0.1,               # for Brent
            v.unknown_swap_maty = swap_maty,      # unknown zero maturity
            v.swap_rate = df.zr$swap_rate[i],     # observed swap rate
            vd.fixed_date = vd.fixed_date,        # date for fixed leg
            vd.float_date = vd.float_date,        # date for float leg
            vd.zero_date_all = df.zr$d.date[1:i], # all dates for zero curve
            v.zero_rate_known  = df.zr$zero_rate[1:(i1)], # known zero rates
            d.spot_date = d.spot_date, 
            no_amt = no_amt)
        
        # 2) update this zero curve with the newly found zero rate
        df.zr$zero_rate[i] < m$par
        
        # 3) convert this new zero rate to discount factor
        df.zr$DF[i] < exp(df.zr$zero_rate[i]*df.zr$tau[i]/365)
        
        k < k + 1
    }
    return(df.zr)
}
 
#————————————————————–
# objective function to be minimized
#————————————————————–
objf < function(
    v.unknown_swap_zero_rate, # unknown zero curve (rates)
    v.unknown_swap_maty,      # unknown swap maturity
    v.swap_rate,              # fixed rate
    vd.fixed_date,            # date for fixed leg
    vd.float_date,            # date for float leg
    vd.zero_date_all,         # all dates for zero curve
    v.zero_rate_known,        # known zero curve (rates)
    d.spot_date,              # spot date
    no_amt) {                 # nominal principal amount
 
    # zero curve augmented with zero rates for swaps
    v.zero_rate_all < c(v.zero_rate_known,
                         v.unknown_swap_zero_rate)
    
    v.swap_pr < NULL # vector of swap prices
    
    k < 1
    for(i in v.unknown_swap_maty) {
        
        # calculate IRS swap price
        swap_pr < f_zero_prr_IRS(
            v.swap_rate[k],          # fixed rate, 
            vd.fixed_date[1🙁2*i)],  # semi-annual date
            vd.float_date[1🙁4*i)],  # quarterly   date
            vd.zero_date_all,        # zero curve (dates)
            v.zero_rate_all,         # zero curve (rates)
            d.spot_date, no_amt, “n”)
        
        # concatenate swap prices
        v.swap_pr < c(v.swap_pr, swap_pr)
        k < k + 1
    }
    
    return(sum(v.swap_pr^2))
}
 
#=========================================================================
# Main 
#=========================================================================
 
#————————————————————–
# 1. Market Information
#————————————————————–
 
# Zero curve from Bloomberg as of 2021-06-30 until 5-year maturity
df.mt < data.frame(
    
    d.date = as.Date(c(“2021-10-04”,“2021-12-15”,
                       “2022-03-16”,“2022-06-15”,
                       “2022-09-21”,“2022-12-21”,
                       “2023-03-15”,“2023-07-03”,
                       “2024-07-02”,“2025-07-02”,
                       “2026-07-02”)),
    
    # we use swap rate not zero rate.
    swap_rate= c(0.00145750000000000,
                 0.00139609870272047,
                 0.00203838571440434,
                 0.00197747863867587,
                 0.00266249271921742,
                 0.00359490949297661,
                 0.00512603194652204,
                 0.00328354999423027,
                 0.00571049988269806,
                 0.00793000012636185,
                 0.00964949995279312
    ),
 
    source = c(“deposit”, rep(“futures”,6), rep(“swap”4))
)
 
#————————————————————–
# 2. Libor Swap Specification
#————————————————————–
 
d.spot_date  < as.Date(“2021-07-02”)    # spot date (date type)
n.spot_date  < as.numeric(d.spot_date)  # spot date (numeric type)
 
no_amt     < 10000000      # notional principal amount
 
# swap cash flow schedule from Bloomberg 
lt.cf_date < list( 
    
    fixed = as.Date(c(“2022-01-04”,“2022-07-05”,
                      “2023-01-03”,“2023-07-03”,
                      “2024-01-02”,“2024-07-02”,
                      “2025-01-02”,“2025-07-02”,
                      “2026-01-02”,“2026-07-02”)),
    
    float = as.Date(c(“2021-10-04”,“2022-01-04”,
                      “2022-04-04”,“2022-07-05”,
                      “2022-10-03”,“2023-01-03”,
                      “2023-04-03”,“2023-07-03”,
                      “2023-10-02”,“2024-01-02”,
                      “2024-04-02”,“2024-07-02”,
                      “2024-10-02”,“2025-01-02”,
                      “2025-04-02”,“2025-07-02”,
                      “2025-10-02”,“2026-01-02”,
                      “2026-04-02”,“2026-07-02”))
)
 
 
#————————————————————–
# 3. 5-year swap price : base
#————————————————————–
 
= 5 # 5-year swap
 
# zero pricing
df.zr < f_zero_maker_IRS(
           df.mt, c(2,3,4,5),
           lt.cf_date$fixed, lt.cf_date$float, 
           d.spot_date, no_amt)
 
pr    < f_zero_prr_IRS(
           df.mt$swap_rate[i+6],
           lt.cf_date$fixed[1🙁2*i)], 
           lt.cf_date$float[1🙁4*i)],
           df.zr$d.date, df.zr$zero_rate, 
           d.spot_date,no_amt, save_cf_yn = “y”)
 
print(paste0(i,“-year Swap price at spot date = “, pr))
 
df.zr_delta    < df.mt_delta    < df.zr[,c(2,3,4)]
df.zr_delta$pr < df.mt_delta$pr < pr
    
#————————————————————–
# 3. Bump and Reprice for Market Greeks
#————————————————————–
 
df.mt_delta$delta < df.mt_delta$pr_up < df.mt_delta$pr_dn < NA
 
# iteration for all market maturities
for(r in 1:11) {
    
    #———————
    # bump up (1bp up)
    #———————
    df.mt_bump < df.mt   # initialization
    df.mt_bump$swap_rate[r] < df.mt_bump$swap_rate[r] + 0.0001 
    
    # zero pricing
    df.zr < f_zero_maker_IRS(df.mt_bump, c(2,3,4,5),
               lt.cf_date$fixed, lt.cf_date$float, 
               d.spot_date, no_amt)
    pr    < f_zero_prr_IRS(df.mt$swap_rate[i+6],
               lt.cf_date$fixed[1🙁2*i)], 
               lt.cf_date$float[1🙁4*i)],
               df.zr$d.date, df.zr$zero_rate, 
               d.spot_date, no_amt, “n”)
    
    # save price with bumping up
    df.mt_delta$pr_up[r] < pr
    
    # check whether swap prices at spot date is at par
    pr    < f_zero_prr_IRS(df.mt_bump$swap_rate[i+6],
               lt.cf_date$fixed[1🙁2*i)],
               lt.cf_date$float[1🙁4*i)],
               df.zr$d.date, df.zr$zero_rate, 
               d.spot_date,no_amt, “n”)
    
    print(paste0(i,“-year Swap price at spot date = “, pr))
    
    #———————
    # bump down (1bp down)
    #———————
    df.mt_bump < df.mt   # initialization
    df.mt_bump$swap_rate[r] < df.mt_bump$swap_rate[r]  0.0001 
    
    # zero pricing
    df.zr < f_zero_maker_IRS(df.mt_bump, c(2,3,4,5),
               lt.cf_date$fixed, lt.cf_date$float, 
               d.spot_date, no_amt)
    
    pr < f_zero_prr_IRS(df.mt$swap_rate[i+6],
            lt.cf_date$fixed[1🙁2*i)], lt.cf_date$float[1🙁4*i)],
            df.zr$d.date, df.zr$zero_rate, d.spot_date,no_amt, “n”)
    
    # save price with bumping down
    df.mt_delta$pr_dn[r] < pr
    
    # check whether swap prict at spot date is at par
    pr < f_zero_prr_IRS(df.mt_bump$swap_rate[i+6],
            lt.cf_date$fixed[1🙁2*i)], lt.cf_date$float[1🙁4*i)],
            df.zr$d.date, df.zr$zero_rate, d.spot_date,no_amt, “n”)
    
    print(paste0(i,“-year Swap price at spot date = “, pr))
}
 
# Market Greeks : Delta calculation
df.mt_delta$delta < (df.mt_delta$pr_up  
                      df.mt_delta$pr_dn)/2 
 
df.mt_delta
 
x11(width = 5, height = 3.5)
barplot(delta ~ substr(d.date,1,7), data = df.mt_delta, 
        width = 0.5, col = “blue”)
 
x11(width = 5, height = 3.5)
barplot(delta ~ substr(d.date,1,7), data = df.mt_delta[1:10,],
        width = 0.5, col = “green”)
 
 
 
#————————————————————–
# 4. Bump and Reprice for Zero Greeks
#————————————————————–
 
df.zr_delta$delta < df.zr_delta$pr_up < df.zr_delta$pr_dn < NA
 
# zero pricing
df.zr < f_zero_maker_IRS(df.mt, c(2,3,4,5),
                            lt.cf_date$fixed, lt.cf_date$float, d.spot_date, no_amt)
 
for(r in 1:11) {
 
    #———————
    # bump up (1bp up)
    #———————
    df.zr_bump    < df.zr  # initialization
    df.zr_bump$zero_rate[r] < df.zr_bump$zero_rate[r] + 0.0001
 
    # zero pricing
    pr   < f_zero_prr_IRS(df.mt$swap_rate[i+6],
              lt.cf_date$fixed[1🙁2*i)], lt.cf_date$float[1🙁4*i)],
              df.zr_bump$d.date, df.zr_bump$zero_rate, 
              d.spot_date, no_amt, “n”)
    
    # save price with bumping up
    df.zr_delta$pr_up[r] < pr
 
    #———————
    # bump down (1bp down)
    #———————
    df.zr_bump    < df.zr  # initialization
    df.zr_bump$zero_rate[r] < df.zr_bump$zero_rate[r]  0.0001
 
    # zero pricing
    pr < f_zero_prr_IRS(df.mt$swap_rate[i+6],
            lt.cf_date$fixed[1🙁2*i)], lt.cf_date$float[1🙁4*i)],
            df.zr_bump$d.date, df.zr_bump$zero_rate, 
            d.spot_date,no_amt, “n”)
    
    # save price with bumping down
    df.zr_delta$pr_dn[r] < pr
}
 
# Market Greeks : Delta calculation
df.zr_delta$delta < (df.zr_delta$pr_up  
                      df.zr_delta$pr_dn)/2
 
df.zr_delta
 
x11(width = 5, height = 3.5)
barplot(delta ~ substr(d.date,1,7), data = df.zr_delta, 
        width = 0.5, col = “blue”)
 
x11(width = 5, height = 3.5)
barplot(delta ~ substr(d.date,1,7), data = df.zr_delta[1:10,],
        width = 0.5, col = “green”)
 
cs


Results


Zero Delta


The following figure and table show zero delta vector along the maturities. A meaningful value of delta is only observed at maturity since delta at maturities less than IRS maturity (3-year) is so small(10~30). But this pattern is not absolute and is subject to the change of market environment because these days shows ultra lower interest rates.



Market Delta


The following figure and table show market delta vector along the maturities. Like zero delta, a meaningful value of delta is only observed at maturity since delta at maturities less than IRS maturity (3-year) is considered a zero. Like zero delta, this pattern is also not absolute and is subject to the change of market environment from the same reason.



Intuition behind IRS delta


In both case of zero and market delta of IRS, we can observe the peak of delta at the IRS maturity. Increase in the interest rate has two effects. Firstly a higher interest rate decreases a discount factor and increases variable cash flows. These two effects have a trade-off.

Secondly, forward rates, which determine future cash flows show the following up and down pattern (we use 25bp up for the clear visual inspection and illustration) because the next swap rate is determined at market value, of which maturity is beyond the bumping maturity. Therefore there are positive and negative effects on future cash flows at the bumping time and the next time.

IRS greeks forward rate

But at maturity, there is only positive effect on future cashflows because the successive negative effect takes place beyond the maturity of this IRS.

To be more specific, let’s compare the Aqua and Yellow colored line, which represent the forward rate curve with 2-year and 3-year swap rate bumping up respectively. We can observe that as the 2-year swap rate is bumped up, a downward movement of 2-year forward rate at time 2.25-year is following the upward movement of it at time 2-year. But in case of 3-year bumping, there is only upward movement of forward rate at time 3-year.

IRS delta forward rate



Conclusion


From this post, we have calculated delta sensitivities of IRS. In this example, two methods do not show some significant differences. But this result is not general because market Greeks permit interactions between market variables but zero Greeks does not (or little).

For example, in case of a Libor 3×6 basis swap, when Libor3M swap rates are changed, Libor6M zero curve is also changed. But there is little or no interaction effect in the case of zero Greeks. Therefore, it is advised for you to investigate the full effect of Greeks calculation in many cases. \(\blacksquare\)

To leave a comment for the author, please follow the link and comment on their blog: K & L Fintech Modeling.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)