one-way random walks

[This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

A rather puzzling riddle from The Riddler on an 3×3 directed grid and the probability to get from the North-West to the South-East nodes following the arrows. Puzzling because while the solution could be reasonably computed with an R code like

sucz=0
for(i in 1:2^12){
  path=intToBits(i)[1:12]
  sol=0
  for(j in 1:12)sol=max(sol,
        prod(path[paz[[j]][paz[[j]]>0]]==01)*
        prod(path[-paz[[j]][paz[[j]]<0]]==00))
  sucz=sucz+sol

where paz is the list of the 12 possible paths from North-West to South-East (excluding loops!), leading to a probability of 1135/2¹², I could not find a logical reasoning to reach this number. The paths of length 4, 6, 8 are valid in 2⁸, 2⁶, 2⁴ of the cases, respectively and logically!, but this does not help as they are dependent.

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)