New plot functionality for ClustImpute 0.2.0 and other improvements

[This article was first published on R on Datentrang, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Let’s create some dummy data… ### Random Dataset set.seed(739) n <- 7500 # numer of points nr_other_vars <- 4 mat <- matrix(rnorm(nr_other_vars*n),n,nr_other_vars) me<-4 # mean x <- c(rnorm(n/3,me/2,1),rnorm(2*n/3,-me/2,1)) y <- c(rnorm(n/3,0,1),rnorm(n/3,me,1),rnorm(n/3,-me,1)) true_clust <- c(rep(1,n/3),rep(2,n/3),rep(3,n/3)) # true clusters dat <- cbind(mat,x,y) dat<- as.data.frame(scale(dat)) # scaling summary(dat) ## V1 V2 V3 V4 ## Min. :-3.40352 Min. :-4.273673 Min. :-3.82710 Min. :-3.652267 ## 1st Qu.:-0.67607 1st Qu.:-0.670061 1st Qu.:-0.66962 1st Qu.:-0.684359 ## Median : 0.

To leave a comment for the author, please follow the link and comment on their blog: R on Datentrang.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)