[This article was first published on Statistics & R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The data displayed by this {shinyapp}
is taken from Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE). The raw data is available on {Github}
. The data is updated on daily basis.
Packages needed for the app:
library(easypackages) # install.packages("easypackages") libraries("lubridate", "tidyverse", "readr", "plotly") urlfile="https://raw.githubusercontent.com/RamiKrispin/coronavirus/master/csv/coronavirus.csv" coronavirus <- read_csv(url(urlfile)) coronavirus <- coronavirus %>% mutate(month=as.factor(month(as.POSIXlt(coronavirus$date, format="%Y/%m/%d")))) countries_list <- c(levels(as.factor(coronavirus$country))) Months <- c(levels(coronavirus$month))
Overview of 2020
selectInput(inputId = "Ctr", label = "Country of interest", choices = countries_list, selected = "Germany") checkboxGroupInput("type_dat", "Type", choiceNames=c("Confirmed", "Death", "Recovered"), choiceValues = c("confirmed", "death", "recovered"), selected = "Confirmed") dat_Ctr <- reactive( coronavirus %>% filter( (country %in% input$Ctr) & (type %in% input$type_dat) ) %>% group_by(month, type) %>% summarise(cases=sum(cases)) ) renderPlotly({ validate( need(input$type_dat, "") ) dat_Ctr() %>% ggplot(aes(month, cases, color=type, group=type))+ geom_point()+ geom_line()+ theme_bw()+ theme(text = element_text(size=20))+ facet_wrap(~type, scales = "free", nrow = 2, labeller = labeller( type = c("confirmed" = "Confirmed", "death"="Death", "recovered"="Recovered")) )+ theme(legend.position = "none")+ theme(axis.text.x = element_text(size = 12, face="bold"), axis.text.y = element_text(size = 12, face="bold"))+ xlab("Month")+ ylab("Cases") })
Overview of Months
selectInput(inputId = "Ctr_", label = "Country of interest", choices = countries_list, selected = "Germany") checkboxGroupInput("type_dat_", "Type", choiceNames=c("Confirmed", "Death", "Recovered"), choiceValues = c("confirmed", "death", "recovered"), selected = "Confirmed") numericInput("obss", "Month", max(as.numeric(as.character(coronavirus$month))), min = 1, max = 12) dat_Month <- reactive( coronavirus %>% filter( (country %in% input$Ctr_) & (month %in% as.character(input$obss)) & (type %in% input$type_dat_))%>% group_by(date, type) %>% summarise(cases=sum(cases), month=unique(month), type=unique(type)) ) renderPlotly({ validate( need(input$obss, "") ) validate( need(input$type_dat_, "") ) dat_Month() %>% ggplot(aes(date, cases, color=type))+ geom_point(aes(shape=month))+ geom_line()+ theme_bw()+ facet_wrap(~type, scales = "free", nrow = 2, labeller = labeller( type = c("confirmed" = "Confirmed", "death"="Death", "recovered"="Recovered")) )+ theme(legend.position = "none")+ theme(axis.text.x = element_text(size = 12, face="bold"), axis.text.y = element_text(size = 12, face="bold"))+ xlab("Month")+ ylab("Cases") })
To leave a comment for the author, please follow the link and comment on their blog: Statistics & R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.