Site icon R-bloggers

4 R projects to form a core data analyst portfolio

[This article was first published on Articles - The Analyst Code, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Introduction

The job market for data analysts is large and highly competitive. Many companies, including companies not traditionally classified as “tech” or “coding” companies are looking to hire people with analytical coding experience. Yet, the numbers of applicants seems to be rising even faster. It’s a competitive market and you want your application to stand out.

Many jobs descriptions include lines like “Executes and advises on reporting needs and works cross-functionally to analyze data and make actionable recommendations at all levels” or “Utilizes advanced analytical and/or statistical ability to evaluate data and make judgments and recommendations“, “Experience in at least one computer programming language or analytical programming language (R, Python, SAS, etc.)” (emphasis added).

Notice that these job postings include two common themes (1) experience analyzing data (2) and experience providing recommendations. Your goal as an aspiring analyst is to be able to demonstrate experience in both of these domains. But how can you do this when you are applying for your first job in the field? Easy: spend some time building a core portfolio that shows the types of skills that recruiters want.

This article covers four projects that can form the core of your application portfolio. We recommend completing these prior to applying for jobs so that you can have demonstrable experience to include on your resume and discuss in your interviews. Be sure to create a GitHub repo for each project and link prominently to your GitHub profile on your resume.

I expect that building this portfolio will take at least one month of focused work.

As you work through the projects, keep in mind that your goal is not just to gain experience analyzing data but also providing insightful recommendation. Even though this is practice, structure your output to include conclusions like “If I wanted to improve my exercise habits, the data show that…”. Prove to future recruiters that you have the skills they want to see.

Core portfolio projects

Exploratory data analysis

Interactive Shiny dashboard

Natural Language Processing (NLP) with R

Machine learning with R

To leave a comment for the author, please follow the link and comment on their blog: Articles - The Analyst Code.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.