[This article was first published on Joe Roe, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
The theme for day 5 of the #30DayMapChallenge is “blue”. My submission is a map of simulated rainfall in Southwest Asia during key climate periods in the Late Quaternary.
The map was generated in R using the code below. View the RMarkdown source on GitHub.
library("tidyverse") library("sf") library("raster") library("stars") library("glue") library("rnaturalearth") library("ragg") # remotes::install_github("joeroe/rpaleoclim") library("rpaleoclim")
Data
I used reconstructed climate data from PaleoClim. My package rpaleoclim makes getting data from PaleoClim more straightforward.
sw_asia <- extent(c(25, 65, 15, 45)) tribble( ~code, ~name, ~start, ~end, "lh", "Late Holocene", 4.2, 0.3, "mh", "Mid Holocene", 8.326, 4.2, "eh", "Early Holocene", 11.7, 8.326, "yds", "Younger Dryas", 12.9, 11.7, "ba", "Bølling-Allerød", 14.7, 12.9, "hs1", "Heinrich Stadial 1", 17.0, 14.7 ) %>% mutate(paleoclim = map(code, paleoclim, region = sw_asia)) %>% mutate(paleoclim = map(paleoclim, subset, subset = "bio_12")) -> palclim
As always, Natural Earth provides the base layers.
ocean <- ne_download(scale = 10, type = "ocean", category = "physical", returnclass = "sf") lakes <- ne_download(scale = 10, type = "lakes", category = "physical", returnclass = "sf") rivers <- ne_download(scale = 10, type = "rivers_lake_centerlines_scale_rank", category = "physical", returnclass = "sf") ocean <- st_make_valid(ocean) ocean <- st_crop(ocean, sw_asia) lakes <- st_crop(lakes, sw_asia) rivers <- st_crop(rivers, sw_asia)
Plot
I converted the palaeoclimate data from Raster
to
stars format, since the latter
makes it easier to combine raster and sf
vector layers.
palclim$paleoclim %>% stack() %>% st_as_stars() %>% st_set_dimensions("band", values = glue_data(palclim, "{name} ({end}–{start} ka)")) -> palclim_cube ggplot() + geom_stars(data = palclim_cube) + geom_sf(data = ocean, fill = "#f9f9f9", colour = "#ffffff", size = 0.25) + geom_sf(data = rivers, mapping = aes(size = strokeweig / 2), colour = "#0c2c84") + geom_sf(data = lakes, fill = "#0c2c84", colour = NA) + geom_sf(data = sw_asia %>% as("SpatialPolygons") %>% st_as_sf() %>% st_set_crs(4326), fill = NA, colour = "#ffffff", size = 0.5) + scale_fill_distiller(palette = "YlGnBu", direction = 1, trans = "pseudo_log", labels = function(x) paste(x, "mm"), guide = guide_colourbar(title = NULL, frame.colour = "#ffffff", ticks.colour = "#ffffff", barheight = unit(0.75, "snpc"))) + scale_size_identity() + facet_wrap(~band) + labs( x = NULL, y = NULL, title = "Late Quaternary Precipitation in Southwest Asia", subtitle = "Simulated annual rainfall. Data: PaleoClim <http://www.paleoclim.org/>", caption = paste("CC BY SA 2020 Joe Roe, #30DayMapChallenge Day 5", "<https://joeroe.io/posts/2020-11-05-30daymapchallenge-blue>", sep = "\n") ) + theme_minimal( base_family = "Source Sans Pro", ) + theme( plot.title = element_text(face = "bold"), axis.text = element_blank(), panel.grid = element_blank(), )
To leave a comment for the author, please follow the link and comment on their blog: Joe Roe.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.