Site icon R-bloggers

COVID-19: Exponential Growth in London

[This article was first published on R & Decision Making, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

 

I predicted on 25th August a second-wave in London in 2-4 weeks time. It looks like the recent media’s coverage and the government’s policy reaction are consistent with my prediction.

The policy response of rule-of-six-in-social-gathering is mild. Hopefully though, it forces people to realise that they cannot afford to relax too much. Nevertheless, from talking to friends & colleagues, I don’t get the sense that people are ready to scale back their activity and social events!

I have fitted an exponential curve to the recent data and I get a whopping 98% R2 and <1% p-value (OK – R2 is a bit inflated on overlapping data but still.). Here I added to my graph the fitted value and the model’s predicted value for the next four weeks.

#covid19 #secondwave

The full code below. The code is essentially based on my previous post with the additional exponential model in the middle section.

library(data.table)
library(ggplot2)
data_url <- “https://c19downloads.azureedge.net/downloads/csv/coronavirus-cases_latest.csv”
raw_data <- fread(data_url, check.names = TRUE)
area_name <- “London”
area_type <- “region”
area_data <- raw_data[
  Area.name == area_name &
    Area.type == area_type,,
  ][,Specimen.date := as.Date(Specimen.date)
    ][,c(“Specimen.date”,”Daily.lab.confirmed.cases”)][
      order(Specimen.date)
      ]
area_data <- merge(area_data,
                   data.table(Specimen.date = seq(
                     min(area_data[,Specimen.date]),
                     max(area_data[,Specimen.date]),
                     by = “1 day”
                   )), all = TRUE, by = “Specimen.date”)
setkey(area_data, Specimen.date)
setnafill(area_data, type = “const”, fill = 0,
          cols = c(“Daily.lab.confirmed.cases”))
area_data[,roll_mean := frollmean(Daily.lab.confirmed.cases, n = 7, align = “right”)]
######################################
###########Exponential model##########
######################################
area_data[,increasing := c(rep(NA,7), roll_mean[-(1:7)]- roll_mean[-((.N-6):.N)]>0)]
end_date <- area_data[order(Specimen.date, decreasing = TRUE)][increasing==TRUE,,][,
  Specimen.date[1], by=”increasing”]$V1
start_date <- area_data[order(Specimen.date, decreasing = TRUE)][
  increasing==FALSE & Specimen.date < end_date,,][,
     Specimen.date[1], by=”increasing”]$V1
exp_lm_data <- area_data[Specimen.date > start_date & Specimen.date <= end_date,,]
exp_lm_data[, days := 1:.N]
exp_lm <- lm(log(roll_mean)~ days, data = exp_lm_data)
exp_lm_data[,fitted_numbers := exp(fitted.values(exp_lm))]
predicted_data <- data.table(days=max(exp_lm_data$days)+1:28)
predicted_data[,Specimen.date := min(exp_lm_data$Specimen.date)+ lubridate::days(days)]
predicted_data[,predicted_numbers := exp(predict.lm(exp_lm, predicted_data))]
#####################################
m_area_data <- melt(area_data, id.vars=”Specimen.date”,
                    measure.vars = c(“Daily.lab.confirmed.cases”,”roll_mean”))
exp_lm_data <- melt(dplyr::bind_rows(exp_lm_data, predicted_data),
                    id.vars=”Specimen.date”,
                    measure.vars = c(“fitted_numbers”,”predicted_numbers”))
m_area_data <- rbind(m_area_data, exp_lm_data)
area_plot <- ggplot(m_area_data, aes(x = Specimen.date, y = value, fill = variable, color = variable))+
  geom_bar(data = subset(m_area_data, variable == “Daily.lab.confirmed.cases”),
           stat = “identity”) +
  geom_line(data = subset(m_area_data, variable != “Daily.lab.confirmed.cases”)) +
  labs(x=”Specimen Date”, y=”Number of Confirmed Cases”,
       fill = “”, color = “”) +
  scale_fill_manual(values = c(“#ff0000″,”#05d153″,”#cad105″,”#000000”),
                    labels = c(sprintf(“%s # Daily Confirmed cases”,area_name),
                               “fitted”,”predicted”,”7 day average”)) +
  scale_color_manual(values = c(“#ff0000″,”#05d153″,”#cad105″,”#000000”),
                     labels = c(sprintf(“%s # Daily Confirmed cases”,area_name),
                                “fitted”,”predicted”,”7 day average”)) +
  scale_x_date(date_breaks = “4 weeks”, date_labels = “%Y-%m-%d”) +
  theme_bw() %+replace% theme(legend.position = “top”,
                              legend.justification = “left”)


To leave a comment for the author, please follow the link and comment on their blog: R & Decision Making.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.