An Example Where Square Loss of a Sigmoid Prediction is not Convex in the Parameters

[This article was first published on R – Win Vector LLC, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I’ve added a worked R example of the non-convexity, with respect to model parameters, of square loss of a sigmoid-derived prediction here.

Unnamed chunk 6 1

This is finishing an example for our Python note “Why not Square Error for Classification?”. Reading that note will give a usable context and background for this diagram.

The undesirable property is: such a graph says that a parameter value of b = -1 and b = -0.25 have similar losses, but parameters values in-between are worse. This might seem paradoxical, but it is an artifiact of the loss-function – not an actual property of the data or model. The same note shows the deviance loss has the desirable convex property: interpolations of good parameter values are also good.

To leave a comment for the author, please follow the link and comment on their blog: R – Win Vector LLC.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)