Interactive correlation plot
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Correlation figure is very useful to show correlation for all variables in a data frame. There are several ways to draw a correlation plot in R. This post is to show how to create correlation plots and interactive plot in Rmarkdown.
Load all required libraries.
library(ggplot2) library(corrplot) library(ggiraph) library(tidyverse)
Basic plot function
The plot
function in basic R can be used to plot correlation in a data frame (e.g. the dataset longley
). However this method is not suitable to view a table with lots of columns.
plot(longley)
corrplot package
corrplot
package can be used to draw a static correlation figure for a data frame. However, the scatter plots are not plotted for each pair of variables and it is hard to understand the real correlation.
cor(longley) %>% corrplot()
Interactive figure using ggiraph
ggiraph
package can convert a ggplot into interactive figure. A ggplot2
figure is created for the correlation. It is possible to show the scatter plot when click on the correlation map.
# Calculate the correlation and obtain the lower triangle pd <- cor(longley) pd[upper.tri(pd)] <- NA pd <- reshape2::melt(pd, na.rm = TRUE) colors = c("blue", "white", "red") # Create ggplot2 p1 <- ggplot(pd) + geom_tile(aes(Var1, Var2, fill = value), color = "gray") + scale_fill_gradient2(low = colors[1], high = colors[3], mid = colors[2], midpoint = 0, limit = c(-1, 1), space = "Lab", name = "Corr") + geom_text(mapping = aes(x = Var1, y = Var2, label = round(value, 1)), size = 2) + ggplot2::coord_fixed() + theme_minimal() + theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 8, hjust = 1), axis.text.y = element_text(size = 8), legend.position = 'bottom') + guides(fill = FALSE) + # guides(fill = guide_colorbar(title = NULL, barwidth = unit(0.6, "npc"))) + xlab("") + ylab("") p1
In the next step, the interactive figure is created through adding new columns data_id
and tooltip
.
pd2 <- pd %>% mutate(data_id = paste0(Var1, '-', Var2), tooltip = paste0(Var1, '-', Var2, ': ', round(value, 2))) p2 <- ggplot(pd2) + geom_tile_interactive(aes(Var1, Var2, fill = value, tooltip = tooltip ), color = "gray") + scale_fill_gradient2(low = colors[1], high = colors[3], mid = colors[2], midpoint = 0, limit = c(-1, 1), space = "Lab", name = "Corr") + geom_text(mapping = aes(x = Var1, y = Var2, label = round(value, 1)), size = 2) + ggplot2::coord_fixed() + theme_minimal() + theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 8, hjust = 1), axis.text.y = element_text(size = 8), legend.position = 'bottom') + guides(fill = FALSE) + # guides(fill = guide_colorbar(title = NULL, barwidth = unit(0.6, "npc"))) + xlab("") + ylab("") girafe(ggobj = p2)
The onclick
event can be added for each grid to show the scatter plot through calling the js
script. A js function create_fig
is defined to use d3.js
to draw a scatter plot.
knitr::raw_html(' <script type="text/javascript"> var create_fig = function(valuex, valuey, xlabel, ylabel) { var margin = {top: 10, right: 30, bottom: 50, left: 70}, width = 460 - margin.left - margin.right, height = 400 - margin.top - margin.bottom; // Remove old plot var svg1 = d3.select("#comparison-plot"); svg1.selectAll("*").remove(); // append the svg object to the body of the page var svg = d3.select("#comparison-plot") .append("svg") .attr("width", width + margin.left + margin.right) .attr("height", height + margin.top + margin.bottom) .append("g") .attr("transform", "translate(" + margin.left + "," + margin.top + ")"); // Add X axis var x = d3.scaleLinear() .domain([Math.min(...valuex), Math.max(...valuex)]) .range([ 0, width ]); svg.append("g") .attr("transform", "translate(0," + height + ")") .call(d3.axisBottom(x)); svg.append("text") .attr("class", "x label") .attr("text-anchor", "end") .attr("x", margin.left + width / 2) .attr("y", margin.top + height + 30) .text(xlabel); // Add Y axis var y = d3.scaleLinear() .domain([Math.min(...valuey), Math.max(...valuey)]) .range([ height, 0]); svg.append("text") .attr("class", "y label") .attr("text-anchor", "end") .attr("y", -50) .attr("x", -(height / 2) + margin.top) .attr("transform", "rotate(-90)") .text(ylabel); svg.append("g") .call(d3.axisLeft(y)); // Create data item var data = valuex.map((item, i) => ({x:item, y:valuey[i]})) // Add dots svg.append("g") .selectAll("dot") .data(data) .enter() .append("circle") .attr("cx", function (d) { return x(d.x); } ) .attr("cy", function (d) { return y(d.y); } ) .attr("r", 4) .style("fill", "#69b3a2") } </script> ')
The js
is created to response the onclick
event.
# Generate js to create_fig generate_js <- function(df) { x <- longley[[df$Var1]] y <- longley[[df$Var2]] df$onclick <- paste0("create_fig(", jsonlite::toJSON(x), ", ", jsonlite::toJSON(y), ", ", '"', df$Var1, '", ', '"', df$Var2, '"', ")") df } # Create a new data frame pd3 <- pd2 %>% group_by(Var1, Var2) %>% do(generate_js(.)) p3 <- ggplot(pd3) + geom_tile_interactive(aes(Var1, Var2, fill = value, tooltip = tooltip, data_id = data_id, onclick = onclick ), color = "gray") + scale_fill_gradient2(low = colors[1], high = colors[3], mid = colors[2], midpoint = 0, limit = c(-1, 1), space = "Lab", name = "Corr") + geom_text(mapping = aes(x = Var1, y = Var2, label = round(value, 1)), size = 2) + ggplot2::coord_fixed() + theme_minimal() + theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 8, hjust = 1), axis.text.y = element_text(size = 8), legend.position = 'bottom') + guides(fill = FALSE) + # guides(fill = guide_colorbar(title = NULL, barwidth = unit(0.6, "npc"))) + xlab("") + ylab("") girafe(ggobj = p3)
A new div
element is added at the bottom of interactive figure to show the scatter plot.
knitr::raw_html('<div id="comparison-plot"></div>')
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.