Should I send my kids back to school?

[This article was first published on R & Decision Making, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

To be honest, the main reason for me to send my kids back to school is to keep the household sane. Nevertheless, the decision should be informed by data.

So here we go. I have downloaded the data from the UK government website and filtered the data by region. The UK lock down started 15th March when there were about 6 new cases per day. In the area I am at, the number of daily confirmed cases has come down below 6 per day for some time.

I shall caveat that conservatively, we should check all the surrounding areas and wait for 0 cases for at least 2 weeks for all of them to be safe.

I have schedule a job to update the graph every day to keep an eye on the number. For now and for my family, the risk is definitely worth taking.

#data.table #R #backtoschool #covid19 #parenthood


library(data.table)
library(ggplot2)
data_url <- "https://c19downloads.azureedge.net/downloads/csv/coronavirus-cases_latest.csv"
raw_data <- fread(data_url, check.names = TRUE)
merton_data <- raw_data[
  Area.name == "Merton" &
    Area.type == "Upper tier local authority",,
  ][,Specimen.date := as.Date(Specimen.date)
    ][,c("Specimen.date","Daily.lab.confirmed.cases")][
           order(Specimen.date)
           ]
merton_data <- merge(merton_data,
                     data.table(Specimen.date = seq(
                       min(merton_data[,Specimen.date]),
                       max(merton_data[,Specimen.date]),
                       by = "1 day"
                     )), all = TRUE, by = "Specimen.date")
setkey(merton_data, Specimen.date)
setnafill(merton_data, type = "const", fill = 0,
          cols = c("Daily.lab.confirmed.cases"))
merton_data[,roll_mean := frollmean(Daily.lab.confirmed.cases, n = 7, align = "right")]
m_merton_data <- melt(merton_data, id.vars="Specimen.date",
                      measure.vars = c("Daily.lab.confirmed.cases","roll_mean"))
merton_plot <- ggplot(m_merton_data, aes(x = Specimen.date, y = value, fill = variable, color = variable))+
  geom_bar(data = subset(m_merton_data, variable == "Daily.lab.confirmed.cases"),
           stat = "identity") +
  geom_line(data = subset(m_merton_data, variable == "roll_mean")) +
  labs(x="Specimen Date", y="Number of Confirmed Cases",
      fill = "", color = "") +
  scale_fill_manual(values = c("#ff0000","#000000"),
                    labels = c("Merton # Daily Confirmed cases",
                               "7 day average")) +
  scale_color_manual(values = c("#ff0000","#000000"),
                    labels = c("Merton # Daily Confirmed cases",
                               "7 day average")) +
  scale_x_date(date_breaks = "2 weeks", date_labels = "%Y-%m-%d") +
  theme_bw() %+replace% theme(legend.position = "top",
                              legend.justification = "left")
ggsave(filename = "Merton_COVID.png", merton_plot, width = 10, height = 6)

To leave a comment for the author, please follow the link and comment on their blog: R & Decision Making.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)