% mutate(value=value/lag(value)-1, MEASURE="GYSA") argentina_gdp_level % rename(Country=`Geopolitical entity (reporting)`) gdp_qoq_argentina % arrange(period) %>% mutate(value=value/lag(value)-1, MEASURE="GPSA") gdp_yoy_argentina % arrange(period) %>% mutate(quarter=quarter(period)) %>% group_by(quarter) %>% mutate(value=value/lag(value)-1, MEASURE="GYSA") gdp % group_by(Country) %>% summarise(period=max(period)) gdp_qoq_latest % filter(MEASURE=="GPSA") %>% inner_join(gdp_qoq_latest_period) %>% mutate(value=((1+value/100)^4-1)*100, var="GDP", measure="quarter") gdp_2020_2021 % filter(var=="GDP" & (period=="2020-01-01" | period=="2021-01-01")) %>% mutate(measure=as.character(year(period))) indprod_latest_period % filter(!is.na(value)) %>% group_by(Country) %>% summarise(period=max(period)) indprod_latest % inner_join(indprod_latest_period) %>% mutate(var="indprod",measure="latest") cpi_latest_period % filter(!is.na(value)) %>% group_by(Country) %>% summarise(period=max(period)) cpi_latest % inner_join(cpi_latest_period) %>% mutate(var="CPI",measure="latest") cpi_2020 % filter(var=="CPI" & period=="2020-01-01") %>% mutate(measure=as.character(year(period))) unemp_latest_period % filter(!is.na(value)) %>% group_by(Country) %>% summarise(period=max(period)) unemp_latest % inner_join(unemp_latest_period) %>% mutate(var="unemp",measure="latest") Merge df_all % mutate(value=ifelse(value>=0, paste0("+",sprintf("%.1f",round(value,1))), sprintf("%.1f",round(value,1)))) %>% unite(measure,c(var,measure)) df_latest % filter(measure %in% c("GDP_latest","indprod_latest","CPI_latest","unemp_latest")) %>% mutate(value=case_when(`@frequency`=="quarterly" ~ paste(value," Q",quarter(period),sep=""), `@frequency`=="monthly" ~ paste(value," ",month(period,label = TRUE, abbr = TRUE, locale = "en_US.utf8"),sep=""), `@frequency`=="annual" ~ paste(value," Year",sep=""), TRUE ~ value)) %>% mutate(value=text_spec(ifelse(year(period)==lastyear,paste0(value,footnote_marker_symbol(3)), ifelse(year(period)==beforelastyear,paste0(value,footnote_marker_symbol(4)),value)), link = paste("https://db.nomics.world",provider_code,dataset_code,series_code,sep = "/"), color = "#333333",escape = F,extra_css="text-decoration:none")) df_final % filter(measure %in% c("GDP_quarter","GDP_2020","GDP_2021","CPI_2020")) %>% bind_rows(df_latest) %>% mutate(Country=case_when(Country=="United Kingdom" ~ "Britain", Country=="Euro area (19 countries)" ~ "Euro area", Country=="China (People's Republic of)" ~ "China", Country=="Korea" ~ "South Korea", TRUE ~ Country)) %>% select(Country,value,measure) %>% spread(measure,value) %>% select(Country,GDP_latest,GDP_quarter,GDP_2020,GDP_2021,indprod_latest,CPI_latest,CPI_2020,unemp_latest) df_final " />

Reproduce economic indicators from ‘The Economist’

[This article was first published on Macroeconomic Observatory - R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Economic data (% change on year ago)
Gross domestic product
Industrial production
Consumer prices
Unemployment rate, %
latest quarter* 2020 2021 latest latest 2020 latest
United States +0.3 Q1 -5.0 -5.9 +4.7 -15.0 Apr +0.3 Apr +0.6 +14.7 Apr
China -0.1 Q1 -1.0 +1.2 +9.2 +5.4 Nov§ +3.3 Apr +3.0 +3.7 Q1
Japan -2.2 Q1 -3.4 -5.2 +3.0 -6.5 Mar +0.1 Apr +0.2 +2.6 Apr
Britain -1.6 Q1 -7.7 -6.5 +4.0 -8.2 Mar +0.9 Apr +1.2 +3.8 Jan
Canada -0.9 Q1 -8.2 -6.2 +4.2 +0.7 Feb -0.2 Apr +0.6 +13.0 Apr
Euro area -3.2 Q1 -14.2 -7.5 +4.7 -12.8 Mar +0.3 Apr +0.2 +7.4 Mar
Austria -2.4 Q1 -9.6 -7.0 +4.5 +1.2 Jan +1.5 Apr +0.4 +4.5 Mar
Belgium -2.8 Q1 -14.7 -6.9 +4.6 +11.7 Dec +0.6 Apr +0.3 +5.3 Mar
France -5.4 Q1 -21.4 -7.2 +4.5 -17.3 Mar +0.3 Apr +0.3 +8.4 Mar
Germany -2.3 Q1 -8.6 -7.0 +5.2 -14.5 Mar +0.9 Apr +0.3 +3.5 Mar
Greece +1.0 Q4 -2.7 -10.0 +5.1 +0.1 Mar -1.4 Apr -0.5 +16.4 Jan
Italy -5.4 Q1 -19.6 -9.1 +4.8 -29.3 Mar +0.1 Mar +0.2 +8.4 Mar
Netherlands -0.6 Q1 -6.7 -7.5 +3.0 -2.2 Mar +1.2 Apr +0.5 +2.9 Mar
Spain -4.1 Q1 -19.4 -8.0 +4.3 -12.2 Mar -0.7 Apr -0.3 +14.5 Mar
Czech Republic -2.3 Q1 -13.6 -6.5 +7.5 -10.0 Mar +3.2 Apr +2.1 +2.0 Mar
Denmark +0.3 Q1 -7.4 -6.5 +6.0 -4.1 Mar +0.4 Mar +0.7 +4.8 Mar
Norway +0.2 Q1 -6.0 -6.3 +2.9 +7.4 Mar +0.8 Apr +2.4 +3.5 Feb
Poland +1.6 Q1 -2.0 -4.6 +4.2 -5.0 Mar +3.4 Apr +3.2 +3.0 Mar
Russia +1.6 Q4 +2.2 -5.5 +3.5 -0.2 Mar +3.1 Apr +3.1 +4.4 Q1
Sweden +0.5 Q1 -1.2 -6.8 +5.2 -0.1 Mar -0.4 Apr +0.5 +6.7 Mar
Switzerland +1.5 Q4 +1.3 -6.0 +3.8 +5.4 Q4§ -1.1 Apr -0.4 +2.4 May
Turkey +4.4 Q1 +2.5 -5.0 +5.0 -1.9 Mar +10.9 Apr +12.0 +12.6 Jan
Australia +2.2 Q4 +2.1 -6.7 +6.1 +3.8 Q4 +2.2 Q1 +1.4 +6.2 Apr
Hong Kong -2.8 Q4 -1.3 -4.8 +3.9 -0.5 Q4 +2.3 Mar +2.0 +4.0 Q1
India +4.8 Q4 +4.5 +1.9 +7.4 +2.6 Dec§ +5.4 Apr +3.3 +5.4 Year
Indonesia +3.0 Q1 -2.7 +0.5 +8.2 -3.7 Apr +2.7 Apr +2.9 +3.9 Q3
Malaysia +4.7 Q4§ +14.7 -1.7 +9.0 +3.1 Mar -0.2 Mar +0.1 +3.3 Q4
Pakistan +3.3 Year NA -1.5 +2.0 +9.9 Dec +9.1 Apr +11.1 +4.4 Q2§
Philippines +6.1 Q4§ +6.4 +0.6 +7.6 -10.1 Dec +2.5 Mar +1.7 +2.1 Q4
Singapore +1.0 Q4 +3.1 -3.5 +3.0 +16.5 Mar -0.7 Apr -0.2 +3.1 Q1
South Korea +1.3 Q1 -5.5 -1.2 +3.4 +6.1 Mar +0.1 Apr +0.3 +3.8 Apr
Taiwan +3.0 Q4 NA -4.0 +3.5 NA +0.7 Q4 +0.5 +3.7 Q4
Thailand +2.4 Q3 +0.4 -6.7 +6.1 -1.2 Q1 -3.0 Apr -1.1 +0.8 Q1
Argentina -0.0 Q4 -0.0 -5.7 +4.4 +4.4 Q3 +45.6 Apr NA +9.5 Q4
Brazil +1.7 Q4 +2.0 -5.3 +2.9 -0.1 Jan +2.4 Apr +3.6 +8.0 Nov
Chile +0.5 Q1 +12.7 -4.5 +5.3 -0.2 Mar +3.4 Apr +3.4 +7.4 Nov
Colombia +0.4 Q1 -9.2 -2.4 +3.7 -1.1 Dec§ +3.5 Apr +3.5 +12.2 Mar
Mexico -2.2 Q1 -4.9 -6.6 +3.0 -2.9 Jun +2.1 Apr +2.7 +3.3 Mar
Peru +2.1 Q1 -16.9 -4.5 +5.2 +20.3 Apr§ +1.8 Mar +1.7 +5.9 Q4
Egypt +5.6 Year NA +2.0 +2.8 +6.2 Mar§ +3.6 Nov +5.9 +9.3 Q4§
Israel +0.6 Q1 -7.1 -6.3 +5.0 +12.6 Feb -0.6 Apr -1.9 +3.3 Apr
Saudi Arabia -0.3 Q4 +22.3 -2.3 +2.9 +1.6 Q3 +1.3 Apr +0.9 +6.0 Year§
South Africa -0.6 Q4 -1.4 -5.8 +4.0 +1.3 Aug§ +4.1 Mar +2.4 +29.8 Q4
Source: DBnomics (Eurostat, ILO, IMF, OECD and national sources). Click on the figures in the `latest` columns to see the full time series.
* % change on previous quarter, annual rate IMF estimation/forecast 2019 § 2018



The aim of this blog post is to reproduce part of the economic indicators table from ‘The Economist’ using only free tools. We take data directly from DBnomics. The DBnomics API can be accessed through R with the rdbnomics package. All the following code is written in R, thanks to the RCoreTeam (2016) and the RStudioTeam (2016). To update the table, just download the code here and re-run it.

if (!"pacman" %in% installed.packages()[,"Package"]) install.packages("pacman", repos='http://cran.r-project.org')
pacman::p_load(tidyverse,rdbnomics,magrittr,zoo,lubridate,knitr,kableExtra,formattable)

opts_chunk$set(fig.align="center", message=FALSE, warning=FALSE)

currentyear <- year(Sys.Date())
lastyear <- currentyear-1
beforelastyear <- currentyear-2
CountryList <- c("United States","China","Japan","Britain","Canada",
                 "Euro area","Austria","Belgium","France","Germany","Greece","Italy","Netherlands","Spain",
                 "Czech Republic","Denmark","Norway","Poland","Russia","Sweden","Switzerland","Turkey",
                 "Australia","Hong Kong","India","Indonesia","Malaysia","Pakistan","Philippines","Singapore","South Korea","Taiwan","Thailand",
                 "Argentina","Brazil","Chile","Colombia","Mexico","Peru",
                 "Egypt","Israel","Saudi Arabia","South Africa")

Download

gdp <- rdb("OECD","MEI",ids=".NAEXKP01.GPSA+GYSA.Q")
hongkong_philippines_thailand_gdp <- 
  rdb("IMF","IFS",mask="Q.HK+PH+TH.NGDP_R_PC_CP_A_SA_PT+NGDP_R_PC_PP_SA_PT") %>% 
  rename(Country=`Reference Area`) %>% 
  mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong",
                           TRUE ~ Country),
         MEASURE=case_when(INDICATOR=="NGDP_R_PC_CP_A_SA_PT" ~ "GYSA",
                           INDICATOR=="NGDP_R_PC_PP_SA_PT" ~ "GPSA"))
malaysia_peru_saudi_singapore_gdp <- 
  rdb("IMF","IFS",mask="Q.MY+PE+SA+SG.NGDP_R_PC_CP_A_PT+NGDP_R_PC_PP_PT") %>% 
  rename(Country=`Reference Area`) %>% 
  mutate(MEASURE=case_when(INDICATOR=="NGDP_R_PC_CP_A_PT" ~ "GYSA",
                           INDICATOR=="NGDP_R_PC_PP_PT" ~ "GPSA"))
taiwan_gdp <- 
  rdb("BI/TABEL9_1/17.Q") %>% 
  mutate(Country="Taiwan",
         MEASURE="GYSA")
egypt_pakistan_gdp <-
  rdb("IMF","WEO",mask="EGY+PAK.NGDP_RPCH") %>% 
  rename(Country=`WEO Country`) %>% 
  mutate(MEASURE="GYSA") %>% 
  filter(year(period)<currentyear)
china_gdp_level <- 
  rdb(ids="OECD/MEI/CHN.NAEXCP01.STSA.Q")
gdp_qoq_china <-
  china_gdp_level %>% 
  arrange(period) %>% 
  mutate(value=value/lag(value)-1,
         MEASURE="GPSA")
gdp_yoy_china <-
  china_gdp_level %>% 
  arrange(period) %>% 
  mutate(quarter=quarter(period)) %>% 
  group_by(quarter) %>% 
  mutate(value=value/lag(value)-1,
         MEASURE="GYSA")
argentina_gdp_level <-
  rdb(ids="Eurostat/naidq_10_gdp/Q.SCA.KP_I10.B1GQ.AR") %>% 
  rename(Country=`Geopolitical entity (reporting)`)
gdp_qoq_argentina <-
  argentina_gdp_level %>% 
  arrange(period) %>% 
  mutate(value=value/lag(value)-1,
         MEASURE="GPSA")
gdp_yoy_argentina <-
  argentina_gdp_level %>% 
  arrange(period) %>% 
  mutate(quarter=quarter(period)) %>% 
  group_by(quarter) %>% 
  mutate(value=value/lag(value)-1,
         MEASURE="GYSA")
gdp <- bind_rows(gdp,hongkong_philippines_thailand_gdp,malaysia_peru_saudi_singapore_gdp,taiwan_gdp,egypt_pakistan_gdp,gdp_yoy_china,gdp_qoq_china,gdp_yoy_argentina,gdp_qoq_argentina)

indprod <- rdb("OECD","MEI",ids=".PRINTO01.GYSA.M")
australia_swiss_indprod <- rdb("OECD","MEI","AUS+CHE.PRINTO01.GYSA.Q")
china_egypt_mexico_malaysia_indprod <-
  rdb("IMF","IFS",mask="M.CN+EG+MX+MY.AIP_PC_CP_A_PT") %>% 
  rename(Country=`Reference Area`)
indonesia_pakistan_peru_philippines_singapore_southafrica_indprod <-
  rdb("IMF","IFS",mask="M.ID+PK+PE+PH+SG+ZA.AIPMA_PC_CP_A_PT") %>% 
  rename(Country=`Reference Area`)
argentina_hongkong_saudiarabia_thailand_indprod <- 
  rdb("IMF","IFS",mask="Q.AR+HK+SA+TH.AIPMA_PC_CP_A_PT") %>% 
  rename(Country=`Reference Area`) %>% 
  mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong",
                           TRUE ~ Country))
indprod <- bind_rows(indprod,australia_swiss_indprod,china_egypt_mexico_malaysia_indprod,indonesia_pakistan_peru_philippines_singapore_southafrica_indprod,argentina_hongkong_saudiarabia_thailand_indprod)

cpi <- rdb("OECD","MEI",ids=".CPALTT01.GY.M")
australia_cpi <- rdb("OECD","MEI",ids="AUS.CPALTT01.GY.Q")
taiwan_cpi <- 
  rdb("BI/TABEL9_2/17.Q") %>% 
  mutate(Country="Taiwan")
other_cpi <- 
  rdb("IMF","IFS",mask="M.EG+HK+MY+PE+PH+PK+SG+TH.PCPI_PC_CP_A_PT") %>% 
  rename(Country=`Reference Area`) %>% 
  mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong",
                           TRUE ~ Country))
cpi <- bind_rows(cpi,australia_cpi,taiwan_cpi,other_cpi)

unemp <- rdb("OECD","MEI",ids=".LRHUTTTT.STSA.M")
swiss_unemp <- rdb("OECD","MEI",mask="CHE.LMUNRRTT.STSA.M")
brazil_unemp <- rdb("OECD","MEI",mask="BRA.LRUNTTTT.STSA.M")
southafrica_russia_unemp <- rdb("OECD","MEI",mask="ZAF+RUS.LRUNTTTT.STSA.Q")
china_unemp <- 
  rdb(ids="BUBA/BBXL3/Q.CN.N.UNEH.TOTAL0.NAT.URAR.RAT.I00") %>% 
  mutate(Country="China")
saudiarabia_unemp <-
  rdb(ids="ILO/UNE_DEAP_SEX_AGE_RT/SAU.BA_627.AGE_AGGREGATE_TOTAL.SEX_T.A") %>%
  rename(Country=`Reference area`) %>%
  filter(year(period)<currentyear)
india_unemp <-
  rdb(ids="ILO/UNE_2EAP_SEX_AGE_RT/IND.XA_1976.AGE_YTHADULT_YGE15.SEX_T.A") %>%
  rename(Country=`Reference area`) %>%
  filter(year(period)<currentyear)
indonesia_pakistan_unemp <-
  rdb("ILO","UNE_DEAP_SEX_AGE_EDU_RT",mask="IDN+PAK..AGE_AGGREGATE_TOTAL.EDU_AGGREGATE_TOTAL.SEX_T.Q") %>% 
  rename(Country=`Reference area`)
other_unemp <-
  rdb("ILO","UNE_DEA1_SEX_AGE_RT",mask="ARG+EGY+HKG+MYS+PER+PHL+SGP+THA+TWN..AGE_YTHADULT_YGE15.SEX_T.Q") %>%
  rename(Country=`Reference area`) %>%
  mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong",
                           Country=="Taiwan, China" ~ "Taiwan",
                           TRUE ~ Country))
unemp <- bind_rows(unemp,brazil_unemp,southafrica_russia_unemp,swiss_unemp,china_unemp,saudiarabia_unemp,india_unemp,indonesia_pakistan_unemp,other_unemp)

forecast_gdp_cpi_ea <- 
  rdb("IMF","WEOAGG",mask="163.NGDP_RPCH+PCPIPCH") %>% 
  rename(`WEO Country`=`WEO Countries group`)
forecast_gdp_cpi <- 
  rdb("IMF","WEO",mask=".NGDP_RPCH+PCPIPCH") %>% 
  bind_rows(forecast_gdp_cpi_ea) %>% 
  transmute(Country=`WEO Country`,
            var=`WEO Subject`,
            value,
            period) %>% 
  mutate(Country=str_trim(Country),
         var=str_trim(var)) %>% 
  mutate(Country=case_when(Country=="United Kingdom" ~ "Britain",
                           Country=="Hong Kong SAR" ~ "Hong Kong",
                           Country=="Korea" ~ "South Korea",
                           Country=="Taiwan Province of China" ~ "Taiwan",
                           TRUE ~ Country),
         var=case_when(var=="Gross domestic product, constant prices" ~ "GDP",
                       var=="Inflation, average consumer prices" ~ "CPI",
                       TRUE ~ var))
forecast_gdp_cpi <- left_join(data.frame(Country=CountryList),forecast_gdp_cpi,by="Country")

Transform

gdp_yoy_latest_period <-
  gdp %>% 
  filter(MEASURE=="GYSA") %>% 
  filter(!is.na(value)) %>% 
  group_by(Country) %>% 
  summarise(period=max(period))
gdp_yoy_latest <-
  gdp %>% 
  filter(MEASURE=="GYSA") %>% 
  inner_join(gdp_yoy_latest_period) %>% 
  mutate(var="GDP",measure="latest")

gdp_qoq_latest_period <-
  gdp %>% 
  filter(MEASURE=="GPSA") %>% 
  filter(!is.na(value)) %>% 
  group_by(Country) %>% 
  summarise(period=max(period))
gdp_qoq_latest <-
  gdp %>% 
  filter(MEASURE=="GPSA") %>% 
  inner_join(gdp_qoq_latest_period) %>% 
  mutate(value=((1+value/100)^4-1)*100,
         var="GDP",
         measure="quarter")

gdp_2020_2021 <-
  forecast_gdp_cpi %>% 
  filter(var=="GDP" & (period=="2020-01-01" | period=="2021-01-01")) %>% 
  mutate(measure=as.character(year(period)))

indprod_latest_period <-
  indprod %>% 
  filter(!is.na(value)) %>% 
  group_by(Country) %>% 
  summarise(period=max(period))
indprod_latest <-
  indprod %>% 
  inner_join(indprod_latest_period) %>% 
  mutate(var="indprod",measure="latest")

cpi_latest_period <-
  cpi %>% 
  filter(!is.na(value)) %>% 
  group_by(Country) %>% 
  summarise(period=max(period))
cpi_latest <-
  cpi %>% 
  inner_join(cpi_latest_period) %>% 
  mutate(var="CPI",measure="latest")

cpi_2020 <-
  forecast_gdp_cpi %>% 
  filter(var=="CPI" & period=="2020-01-01") %>% 
  mutate(measure=as.character(year(period)))

unemp_latest_period <-
  unemp %>% 
  filter(!is.na(value)) %>% 
  group_by(Country) %>% 
  summarise(period=max(period))
unemp_latest <- 
  unemp %>% 
  inner_join(unemp_latest_period) %>% 
  mutate(var="unemp",measure="latest")

Merge

df_all <- 
  bind_rows(gdp_yoy_latest,gdp_qoq_latest,gdp_2020_2021,indprod_latest,cpi_latest,cpi_2020,unemp_latest) %>% 
  mutate(value=ifelse(value>=0,
                      paste0("+",sprintf("%.1f",round(value,1))),
                      sprintf("%.1f",round(value,1)))) %>% 
  unite(measure,c(var,measure))

df_latest <- 
  df_all %>% 
  filter(measure %in% c("GDP_latest","indprod_latest","CPI_latest","unemp_latest")) %>% 
  mutate(value=case_when(`@frequency`=="quarterly" ~ paste(value," Q",quarter(period),sep=""),
                         `@frequency`=="monthly" ~ paste(value," ",month(period,label = TRUE, abbr = TRUE, locale = "en_US.utf8"),sep=""),
                         `@frequency`=="annual" ~ paste(value," Year",sep=""),
                         TRUE ~ value)) %>% 
  mutate(value=text_spec(ifelse(year(period)==lastyear,paste0(value,footnote_marker_symbol(3)),
                                ifelse(year(period)==beforelastyear,paste0(value,footnote_marker_symbol(4)),value)),
                         link = paste("https://db.nomics.world",provider_code,dataset_code,series_code,sep = "/"), 
                         color = "#333333",escape = F,extra_css="text-decoration:none"))

df_final <- 
  df_all %>% 
  filter(measure %in% c("GDP_quarter","GDP_2020","GDP_2021","CPI_2020")) %>% 
  bind_rows(df_latest) %>% 
  mutate(Country=case_when(Country=="United Kingdom" ~ "Britain",
                           Country=="Euro area (19 countries)" ~ "Euro area",
                           Country=="China (People's Republic of)" ~ "China",
                           Country=="Korea" ~ "South Korea",
                           TRUE ~ Country)) %>% 
  select(Country,value,measure) %>% 
  spread(measure,value) %>% 
  select(Country,GDP_latest,GDP_quarter,GDP_2020,GDP_2021,indprod_latest,CPI_latest,CPI_2020,unemp_latest)

df_final <- left_join(data.frame(Country=CountryList),df_final,by="Country")

Display

names(df_final)[1] <- ""
names(df_final)[2] <- "latest"
names(df_final)[3] <- paste0("quarter",footnote_marker_symbol(1))
names(df_final)[4] <- paste0("2020",footnote_marker_symbol(2))
names(df_final)[5] <- paste0("2021",footnote_marker_symbol(2))
names(df_final)[6] <- "latest"
names(df_final)[7] <- "latest"
names(df_final)[8] <- paste0("2020",footnote_marker_symbol(2))
names(df_final)[9] <- "latest"

df_final %>% 
  kable(row.names = F,escape = F,align = c("l",rep("c",8)),caption = "Economic data (% change on year ago)") %>% 
  kable_styling(bootstrap_options = c("striped", "hover","responsive"), fixed_thead = T, font_size = 13) %>% 
  add_header_above(c(" " = 1, "Gross domestic product" = 4, "Industrial production  " = 1, "Consumer prices"= 2, "Unemployment rate, %"=1)) %>% 
  column_spec(1, bold = T) %>% 
  row_spec(seq(1,nrow(df_final),by=2), background = "#D5E4EB") %>% 
  row_spec(c(5,14,22,33,39),extra_css = "border-bottom: 1.2px solid") %>% 
  footnote(general = "DBnomics (Eurostat, ILO, IMF, OECD and national sources). Click on the figures in the `latest` columns to see the full time series.",
           general_title = "Source: ",
           footnote_as_chunk = T,
           symbol = c("% change on previous quarter, annual rate ", "IMF estimation/forecast", paste0(lastyear),paste0(beforelastyear)))

Bibliography

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL: https://www.R-project.org.

RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA, 2016. URL: http://www.rstudio.com/.

To leave a comment for the author, please follow the link and comment on their blog: Macroeconomic Observatory - R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)