Site icon R-bloggers

Worldwide COVID-19 spread visualization with R

[This article was first published on R language – AnalyzeCore by Sergey Bryl' – data is beautiful, data is a story, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

COVID-19 or Coronavirus pandemic is having an unpredictable and huge impact on our lives, so I wanted to see the speed with which it spreads across countries. The following is how I’ve seen it:

COVID-19 or Coronavirus pandemic is having an unpredictable and huge impact on our lives, so I wanted to see the speed with which it spreads across countries. The following is how I’ve seen it:

< !--[if lt IE 9]>< ![endif]--> < video class="wp-video-shortcode" id="video-2678-1" width="450" loop="1" autoplay="1" preload="auto" controls="controls">< source type="video/mp4" src="https://www.analyzecore.com/wp-content/uploads/2020/05/covid-19.mp4?_=1" />https://www.analyzecore.com/wp-content/uploads/2020/05/covid-19.mp4

This animated visualization focuses on the chronology of the virus spreading from China to the rest of the World. In order to strengthen the visual effect, I placed the top 90 countries in two semi diagonals, based on the date when each country reached the daily cases peak (dark red box).

For a more detailed analysis, I’ve created two stationary charts. The first is the same as the animated one but countries are ordered from bottom to top.

The second one focuses on peaks and shows how long and intensive the previous and following stages were. It provides an opportunity to compare each countries’ effectiveness.All values of new cases for each country were normalized via min/max normalization and ranged from 0 to 1. You can use the following R code with comments to play with the public dataset:

click to expand R code
library(tidyverse)
library(reshape2)
library(purrrlyr)

# download dataset
df <- read_csv(url('https://covid.ourworldindata.org/data/ecdc/full_data.csv'))

# normalization function
fun_normalize <- function(x) {
        return ((x - min(x)) / (max(x) - min(x)))
}

# preprocess data
df_prep <- df %>%
        filter(location != 'World') %>%
        
        group_by(location) %>%
        # remove earlier dates
        filter(date > as.Date('2020-01-15', format = '%Y-%m-%d')) %>%
        # remove coutries with less than 1000 total cases
        filter(max(total_cases) > 1000) %>%
        # replace negative values with the mean 
        mutate(new_cases = ifelse(new_cases < 0,
                                  round((lag(new_cases, default = 0) + lead(new_cases, default = 0)) / 2),
                                  new_cases)) %>%
        ungroup() %>%
        select(location, date, new_cases) %>%
        # prepare data for normalization
        dcast(., date ~ location, value.var = 'new_cases') %>%
        # replace NAs with 0
        dmap_at(c(2:ncol(.)), function(x) ifelse(is.na(x), 0, x)) %>%
        # normalization
        dmap_at(c(2:ncol(.)), function(x) fun_normalize(x)) %>%
        melt(., id.vars = c('date'), variable.name = 'country') %>%
        mutate(value = round(value, 6))

        
# define countries order for plots
country_ord_1 <- df_prep %>%
        group_by(country) %>%
        filter(value == 1) %>%
        ungroup() %>%
        arrange(date, country) %>%
        distinct(country) %>%
        mutate(is_odd = ifelse((row_number() - 1) %% 2 == 0, TRUE, FALSE))

country_ord_anim <- bind_rows(country_ord_1 %>%
                                      filter(is_odd == TRUE) %>%
                                      arrange(desc(row_number())),
                              country_ord_1 %>%
                                      filter(is_odd == FALSE))
        
# data for animated plot
df_plot_anim <- df_prep %>%
        mutate(country = factor(country, levels = c(as.character(country_ord_anim$country)))) %>%
        group_by(country) %>%
        mutate(first_date = min(date[value >= 0.03])) %>%
        mutate(cust_label = ifelse(date >= first_date, as.character(country), '')) %>%
        ungroup()


# color palette
cols <- c('#e7f0fa','#c9e2f6', '#95cbee', '#0099dc', '#4ab04a', '#ffd73e', '#eec73a', '#e29421', '#e29421', '#f05336', '#ce472e')


# Animated Heatmap plot
p <- ggplot(df_plot_anim, aes(y = country, x = date, fill = value)) +
        theme_minimal() +
        geom_tile(color = 'white', width = .9, height = .9) +
        scale_fill_gradientn(colours = cols, limits = c(0, 1),
                             breaks = c(0, 1),
                             labels = c('0', 'max'),
                             guide = guide_colourbar(ticks = T, nbin = 50, barheight = .5, label = T, barwidth = 10)) +
        
        geom_text(aes(x = first_date, label = cust_label), size = 3, color = '#797D7F') +
        scale_y_discrete(position = 'right') +
        coord_equal() +
        
        theme(legend.position = 'bottom',
              legend.direction = 'horizontal',
              plot.title = element_text(size = 20, face = 'bold', vjust = 2, hjust = 0.5),
              axis.text.x = element_text(size = 8, hjust = .5, vjust = .5, face = 'plain'),
              axis.text.y = element_blank(),
              axis.title.y = element_blank(),
              panel.grid.major = element_blank(),
              panel.grid.minor = element_blank()
              ) +
        ggtitle('Worldwide COVID-19 spread: new daily cases normalized to location maximum')


# animated chart
library(gganimate)
library(gifski)

anim <- p + 
        transition_components(date) +
        ggtitle('Worldwide COVID-19 spread: new daily cases normalized to location maximum',
                subtitle = 'Date {frame_time}') +
        shadow_mark()

animate(anim,
        nframes = as.numeric(difftime(max(df_plot_anim$date), min(df_plot_anim$date), units = 'days')) + 1,
        duration = 12,
        fps = 12,
        width = 1000,
        height = 840,
        start_pause = 5,
        end_pause = 25,
        renderer = gifski_renderer())
anim_save('covid-19.gif')



# Heatmap plot 1
df_plot_1 <- df_prep %>%
        mutate(country = factor(country, levels = c(as.character(country_ord_1$country)))) %>%
        group_by(country) %>%
        mutate(first_date = min(date[value >= 0.03])) %>%
        ungroup()

ggplot(df_plot_1, aes(y = country, x = date, fill = value)) +
        theme_minimal() +
        geom_tile(color = 'white', width = .9, height = .9) +
        scale_fill_gradientn(colours = cols, limits = c(0, 1),
                             breaks = c(0, 1),
                             labels = c('0', 'max'),
                             guide = guide_colourbar(ticks = T, nbin = 50, barheight = .5, label = T, barwidth = 10)) +
        
        geom_text(aes(x = first_date, label = country), size = 3, color = '#797D7F') +
        scale_y_discrete(position = 'right') +
        coord_equal() +
        
        theme(legend.position = 'bottom',
              legend.direction = 'horizontal',
              plot.title = element_text(size = 20, face = 'bold', vjust = 2, hjust = 0.5),
              axis.text.x = element_text(size = 8, hjust = .5, vjust = .5, face = 'plain'),
              axis.text.y = element_text(size = 6, hjust = .5, vjust = .5, face = 'plain'),
              panel.grid.major = element_blank(),
              panel.grid.minor = element_blank()
        ) +
        ggtitle('Worldwide COVID-19 spread: new daily cases normalized to location maximum')



# Heatmap plot 2
df_plot_2 <- df_prep %>%
        group_by(country) %>%
        filter(date >= min(date[value > 0])) %>%
        arrange(date, .by_group = TRUE) %>%
        mutate(centr_day = min(row_number()[value == 1]),
               n_day = row_number() - centr_day) %>%
        ungroup()

country_ord_2 <- df_plot_2 %>%
        group_by(country) %>%
        filter(date >= min(date[value == 1])) %>%
        summarise(value = sum(value)) %>%
        ungroup() %>%
        arrange(value, country) %>%
        distinct(country)

df_plot_2 <- df_plot_2 %>%
        mutate(country = factor(country, levels = c(as.character(country_ord_2$country)))) %>%
        group_by(country) %>%
        mutate(first_date = min(n_day[value >= 0.01])) %>%
        ungroup()


# Heatmap plot 2
ggplot(df_plot_2, aes(y = country, x = n_day, fill = value)) +
        theme_minimal() +
        geom_tile(color = 'white', width = .9, height = .9) +
        scale_fill_gradientn(colours = cols, limits = c(0, 1),
                             breaks = c(0, 1),
                             labels = c('0', 'max'),
                             guide = guide_colourbar(ticks = T, nbin = 50, barheight = .5, label = T, barwidth = 10)) +
        
        geom_text(aes(x = first_date, label = country), size = 3, color = '#797D7F') +
        coord_equal() +
        
        theme(legend.position = 'bottom',
              legend.direction = 'horizontal',
              plot.title = element_text(size = 20, face = 'bold', vjust = 2, hjust = 0.5),
              axis.text.x = element_text(size = 8, hjust = .5, vjust = .5, face = 'plain'),
              #axis.text.y = element_text(size = 6, hjust = .5, vjust = .5, face = 'plain'),
              axis.text.y = element_blank(),
              axis.title.y = element_blank(),
              panel.grid.major = element_blank(),
              panel.grid.minor = element_blank()
        ) +
        ggtitle('Comparison of different countries effectiveness against COVID-19 
                (new daily cases normalized to location maximum and data centered on a day with maximum new cases)')

 

The post Worldwide COVID-19 spread visualization with R appeared first on AnalyzeCore by Sergey Bryl' – data is beautiful, data is a story.

To leave a comment for the author, please follow the link and comment on their blog: R language – AnalyzeCore by Sergey Bryl' – data is beautiful, data is a story.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.